scholarly journals 370 Iron and Iron Compounds Reduce Phosphorus Leaching from Nursery Containers

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 456B-456
Author(s):  
Jeffrey H. Gillman ◽  
Carl J. Rosen

Phosphorus contamination of surface water is a growing problem associated with container production of nursery plants. Iron and iron compounds have the ability to adsorb phosphorus and render it immobile. Incorporating iron compounds into media at the base of nursery containers serves to filter out phosphorus from fertilizers while still allowing the plant to collect enough phosphorus to grow. Two experiments were devised. The first experiment examined how much phosphorus various iron compounds would adsorb. Metallic iron adsorbed the most phosphorus, followed by HCl reacted magnetite (a form of iron ore), Fe2O3, Fe3O4 and magnetite. In the second experiment, PVC tubes (4 cm inner diam.) were filled to a level of 5 cm with a phosphorus adsorbing layer containing growing media that was 25% or 50% by weight iron compounds. Compounds included metallic iron, HCl reacted magnetite and magnetite. Plain media was used as a control. A layer of 15 cm of media and slow-release fertilizer was applied above the adsorptive layer. One hundred milliliters of distilled water was applied to PVC tubes daily to simulate irrigation. Metallic iron reduced phosphorus leachate to almost 0 for over 2 weeks. HCl reacted magnetite was also effective in reducing phosphorus leachate. Magnetite only affected phosphorus leachate slightly.

2016 ◽  
Vol 20 (1) ◽  
pp. 37 ◽  
Author(s):  
Lili Handayani ◽  
Gunawan Djajakirana ◽  
. Darmawan ◽  
Canecio Peralta Munoz

The low-efficiency problem in fertilizer application can be overcome by controlling fertilizer solubility, i.e. by rendering the fertilizer to be released gradually; such material is also known as slow-release fertilizer (SRF). This research was aimed to formulate SRF by coating technique using acrylic and chitosan as the coating material, and to evaluate fertilizer resistance to too fast disintegration, and rate of nutrient release method. The results demonstrated that fertilizer formulation containing  N, P, K, Fe, Cu, and Zn with granulation technique yielded 74% of granules with 2-5 mm in diameter. The SRFs (formulated fertilizer with acrylic or chitosan coating) were more resistant to water pounding than non-SRF. Furthermore, shaking test with distilled water or 2% citric acid, or by percolation test with distilled water showed that the SRFs had lower nutrient solubility than the non-SRFs. The results of shaking test also specifically indicated that coating with acrylic made the fertilizer more resistant to the citric acid,suggesting that this coating material would be more suitable in acidic soils. The SRFs formulated with the addition of chitosan during blending of micronutrients prior to mixing with macronutrients, granulation, and final coating exhibited lower nutrient solubility than the SRFs without the pre-coating chitosan addition. [How to Cite: Lili H, G Djajakirana, Darmawan, and CP Munoz. 2015. Slow- Release Fertilizer Formulation Using Acrylic and Chitosan Coating. J Trop Soils 19: 37-45. Doi: 10.5400/jts.2015.20.1.37][Permalink/DOI: www.dx.doi.org/10.5400/jts.2015.20.1.37]


2014 ◽  
Vol 931-932 ◽  
pp. 758-761
Author(s):  
Petchporn Chawakitchareon ◽  
Parkwan Poovuttikul ◽  
Thanyanuch Chantanurak

This research aims to develop slow release fertilizers by using Leonardite and Zeolite. Two formulations of slow release fertilizer were prepared namely the Leonardite and Zeolite slow release fertilizer and the Leonardite slow release fertilizer. Theirnutrient releasing rates were investigated and comparedwith that of the commercially availableslow release fertilizer which contained N8:P24:K24.Specifically the slow release fertilizers were formulated from leonardite, zeolite and other fertilizer materials such as ammonium phosphate and potassium chloride. Each formulation was then pelletized and baked at 100°C for 1 hr to remove water; then they were kilned at 150°C for 1 hr. All the kilned fertilizers were analyzed subsequently by using the Fertilizer Test Kit (KU.5) to determine the releasing rates of the main N, P and K nutrients. Each fertilizer was immersed in distilled water and shakenat the speed of 150 rpm for 10 min, 30 min, 1 hr and 2 hr. The nutrients released into the distilled water were determined following the standard methodology. The results indicated that the nutrient releasing rates of the slow release fertilizer prepared from Leonardite and Zeolite were less than those observed in the commercial fertilizer.


2019 ◽  
Vol 15 (1) ◽  
pp. 112
Author(s):  
Syahiful Hadi ◽  
Suryajaya Suryajaya ◽  
Abdullah Abdullah ◽  
Kissinger Kissinger

Urea-hydroxyapatite can be used as fertilizer which was efficient and environmentally friendly. The variation of Ca(OH)2 in the urea-hydroxyapatite’s synthesis and its characterization would provide information for manufacturing slow release fertilizer. The material used were urea (99.5 %); Ca(OH)2; H3PO4 0.67 M and distilled water. The synthesis technique used in this study is bottom-up with Ca(OH)2 variation of 6, 8, 10 and 12 grams. The results of the synthesis with 6 grams of Ca(OH)2  was not able to produce sediment powder. The results of the Scanning Electron Microscopy (SEM) showed that the urea packaging with hydroxyapatite was better for variations of Ca(OH)2  8 grams and 10 grams. The results of the Energy Dispersive X-Ray Spectrometry (EDX) showed more elemental composition in the variation of Ca(OH)2  8 grams and 10 grams which were 35.7 Wt% and 40.4 Wt%. The results of the Fourier Transform Infrared Spectrometer (FTIR) showed that the variation of Ca(OH)2  8 gram has a good bonding of urea and hydroxyapatite. The Particle Size Analyzer (PSA) measurement for all samples of urea-hydroxyapatite yielded the particle size of about 0.5–2.5 mm and 10–15 mm for urea and hydroxyapatite, respectively. As a conclusion, the variation of Ca(OH)2  8 grams could be recommended as a reference in the composition of urea-hydroxyapatite fabrication for slow release fertilizer.


2017 ◽  
Vol 11 (1) ◽  
pp. 50-62 ◽  
Author(s):  
Rajendran Mala ◽  
Ruby Selvaraj ◽  
Vidhya Sundaram ◽  
Raja Rajan ◽  
Uma Gurusamy

1997 ◽  
Vol 61 (1) ◽  
pp. 43-46 ◽  
Author(s):  
F. Ramírez ◽  
V. González ◽  
M. Crespo ◽  
D. Meier ◽  
O. Faix ◽  
...  

Cellulose ◽  
2021 ◽  
Author(s):  
Iris Amanda A. Silva ◽  
Osmir Fabiano L. de Macedo ◽  
Graziele C. Cunha ◽  
Rhayza Victoria Matos Oliveira ◽  
Luciane P. C. Romão

AbstractUrea-based multi-coated slow release fertilizer was produced using water hyacinth, humic substances, and chitosan, with water rich in natural organic matter as a solvent. Elemental analysis showed that the nitrogen content of the fertilizer (FERT) was around 20%. Swelling tests demonstrated the effectiveness of the water hyacinth crosslinker, which reduced the water permeability of the material. Leaching tests showed that FERT released a very low concentration of ammonium (0.82 mg L−1), compared to the amount released from urea (43.1 mg L−1). No nitrate leaching was observed for FERT, while urea leached 13.1 mg L−1 of nitrate. In water and soil, FERT showed maximum releases after 30 and 40 days, respectively, while urea reached maxima in just 2 and 5 days, respectively. The results demonstrated the promising ability of FERT to reduce nitrogen losses, as well as to minimize environmental impacts in the soil–plant-atmosphere system and to improve the efficiency of nitrogen fertilization. Graphic abstract


2021 ◽  
Vol 215 ◽  
pp. 112148
Author(s):  
Ifra Saleem ◽  
Muhammad Aamer Maqsood ◽  
Muhammad Zia ur Rehman ◽  
Tariq Aziz ◽  
Ijaz Ahmad Bhatti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document