Slow Release Fertilizer Prepared from Leonardite and Zeolite

2014 ◽  
Vol 931-932 ◽  
pp. 758-761
Author(s):  
Petchporn Chawakitchareon ◽  
Parkwan Poovuttikul ◽  
Thanyanuch Chantanurak

This research aims to develop slow release fertilizers by using Leonardite and Zeolite. Two formulations of slow release fertilizer were prepared namely the Leonardite and Zeolite slow release fertilizer and the Leonardite slow release fertilizer. Theirnutrient releasing rates were investigated and comparedwith that of the commercially availableslow release fertilizer which contained N8:P24:K24.Specifically the slow release fertilizers were formulated from leonardite, zeolite and other fertilizer materials such as ammonium phosphate and potassium chloride. Each formulation was then pelletized and baked at 100°C for 1 hr to remove water; then they were kilned at 150°C for 1 hr. All the kilned fertilizers were analyzed subsequently by using the Fertilizer Test Kit (KU.5) to determine the releasing rates of the main N, P and K nutrients. Each fertilizer was immersed in distilled water and shakenat the speed of 150 rpm for 10 min, 30 min, 1 hr and 2 hr. The nutrients released into the distilled water were determined following the standard methodology. The results indicated that the nutrient releasing rates of the slow release fertilizer prepared from Leonardite and Zeolite were less than those observed in the commercial fertilizer.

2016 ◽  
Vol 20 (1) ◽  
pp. 37 ◽  
Author(s):  
Lili Handayani ◽  
Gunawan Djajakirana ◽  
. Darmawan ◽  
Canecio Peralta Munoz

The low-efficiency problem in fertilizer application can be overcome by controlling fertilizer solubility, i.e. by rendering the fertilizer to be released gradually; such material is also known as slow-release fertilizer (SRF). This research was aimed to formulate SRF by coating technique using acrylic and chitosan as the coating material, and to evaluate fertilizer resistance to too fast disintegration, and rate of nutrient release method. The results demonstrated that fertilizer formulation containing  N, P, K, Fe, Cu, and Zn with granulation technique yielded 74% of granules with 2-5 mm in diameter. The SRFs (formulated fertilizer with acrylic or chitosan coating) were more resistant to water pounding than non-SRF. Furthermore, shaking test with distilled water or 2% citric acid, or by percolation test with distilled water showed that the SRFs had lower nutrient solubility than the non-SRFs. The results of shaking test also specifically indicated that coating with acrylic made the fertilizer more resistant to the citric acid,suggesting that this coating material would be more suitable in acidic soils. The SRFs formulated with the addition of chitosan during blending of micronutrients prior to mixing with macronutrients, granulation, and final coating exhibited lower nutrient solubility than the SRFs without the pre-coating chitosan addition. [How to Cite: Lili H, G Djajakirana, Darmawan, and CP Munoz. 2015. Slow- Release Fertilizer Formulation Using Acrylic and Chitosan Coating. J Trop Soils 19: 37-45. Doi: 10.5400/jts.2015.20.1.37][Permalink/DOI: www.dx.doi.org/10.5400/jts.2015.20.1.37]


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 456B-456
Author(s):  
Jeffrey H. Gillman ◽  
Carl J. Rosen

Phosphorus contamination of surface water is a growing problem associated with container production of nursery plants. Iron and iron compounds have the ability to adsorb phosphorus and render it immobile. Incorporating iron compounds into media at the base of nursery containers serves to filter out phosphorus from fertilizers while still allowing the plant to collect enough phosphorus to grow. Two experiments were devised. The first experiment examined how much phosphorus various iron compounds would adsorb. Metallic iron adsorbed the most phosphorus, followed by HCl reacted magnetite (a form of iron ore), Fe2O3, Fe3O4 and magnetite. In the second experiment, PVC tubes (4 cm inner diam.) were filled to a level of 5 cm with a phosphorus adsorbing layer containing growing media that was 25% or 50% by weight iron compounds. Compounds included metallic iron, HCl reacted magnetite and magnetite. Plain media was used as a control. A layer of 15 cm of media and slow-release fertilizer was applied above the adsorptive layer. One hundred milliliters of distilled water was applied to PVC tubes daily to simulate irrigation. Metallic iron reduced phosphorus leachate to almost 0 for over 2 weeks. HCl reacted magnetite was also effective in reducing phosphorus leachate. Magnetite only affected phosphorus leachate slightly.


HortScience ◽  
1998 ◽  
Vol 33 (4) ◽  
pp. 593e-593
Author(s):  
Edward Bush ◽  
Jeff Kuehny ◽  
Patricia Branch

Three slow-release fertilizer formulations (Osmocote 14–14–14, 18–6–12, and Nutricote 17–6–10) at three rates (1, 2, and 3 lb/yd3) were incorporated into 4 pine bark: 1 sand (by volume) media filling 1-gal nursery containers. Additional treatments included slow-release fertilizer formulations at 1 lb/yd3 fertigated with 100 ppm N 20–10–20 fertilizer. As fertilizer rates increased, vegetative height, width, and dry-weight accumulation generally increased for both pinched and no-pinch mum crops. Fertigated pinch and no-pinch mums were the largest plants with the greatest dry-weight accumulation for each fertilizer formulation. The high rate for all slow-release fertilizers produced the greatest vegetative growth for nonfertigated treatments. This research suggest that higher rates for incorporated slow-release fertilizers and/or fertigation are required to produce maximum vegetative growth.


2020 ◽  
Vol 12 (5) ◽  
pp. 1982 ◽  
Author(s):  
Jakub Sikora ◽  
Marcin Niemiec ◽  
Monika Tabak ◽  
Zofia Gródek-Szostak ◽  
Anna Szeląg-Sikora ◽  
...  

Optimization of plant nutrition is a very important part of primary production quality systems. Crop fertilization is the most important agrotechnical measure because it determines the amount and quality of the yield. Moreover, excess fertilization intensifies the eutrophication processes and the greenhouse effect. The study aimed to assess the suitability of slow-release fertilizers in cultivation of carrot subspecies Daucus carota L. ssp. sativus in the integrated production system. The objective was realized on the basis of a strict field experiment set up on a clay loam soil with low nutrient content. The dose of fertilizer was the experimental factor. The fertilizers were applied during the formation of the ridges. Traditional fertilizers (ammonium phosphate, potassium salt, ammonium nitrate, and a multi-component fertilizer Polifoska 6), as well as a multi-component fertilizer with slow release of nutrients, NPK Mg (18-12-24-4), were used. In individual variants of the experiment, different fertilization strategies were applied: integrated production fertilization, traditional fertilization, and fertilization based on the use of slow-release fertilizers. The control treatment comprised of unfertilized plants. The efficiency of nitrogen fertilization was evaluated based on agronomic efficiency, partial factor productivity, physiological efficiency, and removal efficiency. Fertilization strategy significantly impacted the quantity of obtained yield. In the control sample, prior to mineral fertilization, the crop yield was 33.53 Mg·ha−1. The largest yield was 82.30 Mg·ha−1.The largest yields were obtained from plants fertilized with a combination of slow-release fertilizers, with nitrogen introduced in the form of ammonium phosphate, and through conventional fertilization. The highest productivity and environmental efficiency were obtained in treatments with fertilization according to the principles of integrated production and with slow-release fertilizers. In terms of environmental efficiency, the best results were obtained through nitrogen fertilization using 400 kg of slow-release fertilizers. The use of slow-release fertilizers in carrot cultivation can significantly improve the efficiency of fertilization, both in terms of production and environmental protection.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 561
Author(s):  
Yaxiao Du ◽  
Xuebin Xu ◽  
Fei Ma ◽  
Changwen Du

Metal-organic frameworks (MOFs) were usually synthesized in hydrothermal conditions; in this study, a more energy-saving, easier to control, and solvent-free mechanochemical method was firstly applied to synthesize MOFs with varied reactants as slow release fertilizer, and the components and structures were characterized by X-ray diffraction (XRD), Fourier transform infrared total attenuated reflectance (FTIR-ATR), and laser-induced breakdown spectroscopy (LIBS). Results showed that three MOFs (compounds I, II, and III) were obtained, the MOFs were confirmed as oxalate phosphate oxalate frameworks (OPA-MOF), and ions were adsorbed between layers that contributed to the contents, while urea molecules mainly impacted the structure. The elemental compositions significantly varied among the three compounds; compound I showed the highest content of N (4.91%), P (15.71%), and Fe (18.60%), compound III indicated the highest content of C (6.52%) and K (12.59%), while the contents of C, K, P, and Fe in compound II were in the medium range. Similar release profiles of Fe and P were found among the three MOFs, and the release rates of nutrients were demonstrated as the order of N > K > P > Fe. The compositions and release profiles demonstrated potential application of MOFs as a novel slow-release fertilizer.


2012 ◽  
Vol 518-523 ◽  
pp. 4745-4748
Author(s):  
Qing Wang ◽  
Sha Chen ◽  
Pei Guang Zhao ◽  
Yu Cao ◽  
Long Fei Zhu ◽  
...  

A kind of double-coated environmental friendly fertilizer was prepared by urea as a core, well-mixed keratin and oxidation starch as an inner coating, and superabsorbent polymer as the outer coating. The influence of water absorbency, water retention, and the slow-release behavior of the study fertilizer were investigated. 0.01M CaCl2 immersion extraction and Kjeldahl digestion method were used to measure the content of nitrogen. And the result showed that the nutrient release was 72wt% on the thirtieth day. This result corresponded with the standard of slow release fertilizers of the Committee of European Normalization (CEN) [1]. Keratin and oxidation starch were biodegradable polymer and nontoxic. Both the properties of the materials and the result of the slow-release behavior suggested a new kind of excellent, environmental friendly, slow-release fertilizer.


1998 ◽  
Vol 8 (2) ◽  
pp. 203-206 ◽  
Author(s):  
Wendy Britton ◽  
E.J. Holcomb ◽  
David J. Beattie

Four rates of two slow-release fertilizers were tested for optimum growth of five hosta cultivars: Hosta sieboldiana `Elegans', Hosta plantaginea `Aphrodite', Hosta `Jade Scepter', Hosta `Hadspen Blue', and Hosta `Francee'. Tissue-cultured hostas from 2.5-cm plugs were planted in 6-inch (15-cm) pots filled with a commercial soilless medium, and the slow-release fertilizer was dibbled into the medium at 0, 3, 6, or 12 g/pot. The plants were maintained for 4 months. Root and shoot fresh and dry weights were recorded at the end of the experiment. In addition, foliar nutrient analysis was conducted on `Aphrodite', `Francee', and `Jade Sceptor'. Overall, hostas grew best when the medium was amended with 3 g of either Osmocote 14N-6P-11.5K or Sierrablen 17N-6P-12K slow-release fertilizer.


2008 ◽  
Vol 18 (3) ◽  
pp. 393-396 ◽  
Author(s):  
Luz M. Reyes ◽  
Douglas C. Sanders ◽  
Wayne G. Buhler

This study was conducted to compare different formulations of a slow-release fertilizer with a conventional fertilizer program to determine their impact on yield and growth of bell pepper (Capsicum annuum). Two formulations of a methylene-urea slow-release fertilizer (Nitamin®) were evaluated on drip-fertigated and plastic-mulched bell peppers during 2006 in the eastern coastal plain and western Appalachian mountains of North Carolina. Liquid slow-release formulations were applied the first 6 or 9 weeks of the growing season and a dry formulation was banded at planting. Treatments were compared with the extension-recommended rate of 200 lb/acre nitrogen (N) (NC-200) and a high-input fertilizer rate of 300 lb/acre N (HI-300) from calcium nitrate injected in 12 weekly applications of drip irrigation. Irrigation was applied twice per week. The slow-release granular formulation at 200 lb/acre N produced the highest marketable yield and better canopy quality in eastern soil. Early marketable yield for this treatment accounted for 46% of the total yield. All slow-release treatments had higher N use efficiency (NUE) values than NC-200 and HI-300 in the eastern study. In loam soil (western study), pepper yield was statistically similar among treatments. Lower rates (150 lb/acre N) of slow-release fertilizer performed as well as NC-200 and HI-300 for marketable yield. Low rates (150 lb/acre N) of one of the liquid formulations performed better in total and marketable NUE than NC-200 and HI-300 in Fletcher, North Carolina. Liquid and dry formulations of slow-release fertilizer showed a potential to be used on bell pepper production across the state at reduced N rates, with greater impact on yield in coarse-textured soils found predominantly in the eastern coastal plain region.


<em>Abstract.</em>—A solid briquette fertilizer for use in the Pacific Northwest streams and elsewhere was identified from a variety of slow-release formulations (26 were tested with varying N:P<sub>2</sub>O<sub>5</sub>:K<sub>2</sub>O ratios and binders) using indoor trough and controlled field experiments. The use of a slow-release fertilizer is an innovative method for adding inorganic nutrients to nutrientpoor (oligotrophic) streams to increase autotrophic production and aid in the restoration of salmonid populations. A series of indoor trough experiments demonstrated that the majority of samples containing binders of molasses, hydrated lime, vegetable oil, bentonite, starch, acrawax, candle wax, and Daratak® XB-3631 (unpolymerized Saran™) dissolved too slowly. The fastest dissolution rates occurred with fertilizer briquettes having no binder or vegetable oil. Further trough and field studies using fertilizer with no binder and vegetable oil as binder examined the effects of varying N:P<sub>2</sub>O<sub>5</sub>:K<sub>2</sub>O ratios. Dissolution rates were varied by using different percentages of magnesium ammonium phosphate (MagAmP; its formula 7:40:0 N:P<sub>2</sub>O<sub>5</sub>:K<sub>2</sub>O) and urea (46:0:0). Optimal continual nutrient release for a period of four months was achieved with a fertilizer formulation of 17:30:0 (percent by weight N:P<sub>2</sub>O<sub>5</sub>:K<sub>2</sub>O), with a ratio of 75% MagAmP to 25% urea, and containing no binder. The dissolution rate for this product ranged from 4.6% to 6.6% per week (for field and trough experiments, respectively) in water of 0.15 m/s average velocity. These studies indicate that a slow-release fertilizer product can be manufactured to last approximately four months when applied in the spring to stimulate autotrophic production in nutrient deficient streams, thereby increasing forage and salmonid production.


2012 ◽  
Vol 92 (6) ◽  
pp. 1223-1228 ◽  
Author(s):  
K. R. Sanderson ◽  
S. A. E. Fillmore

Sanderson, K. R. and Fillmore, S. A. E. 2012. Slow-release nitrogen fertilizer in carrot production on Prince Edward Island. Can. J. Plant Sci. 92: 1223–1228. The impact of nitrogen management using slow-release fertilizers has not been examined for carrot (Daucus carota L.) production in Atlantic Canada. To assess the effects of such products, we evaluated five slow-release fertilizers over a 3-yr period. Treatments consisted of sulphur coated urea (SCU) (42–0–0), isobutylidene diurea (IBDU) (31–0–0), Nutralene® (methylene urea) (40–0–0), Sirflor® (urea formaldehyde) (38–0–0), UFLEXX™ (urea, dicyandiamide, N-(n-butyl) thiophosphoric triamide) (46–0–0) compared with industry standard (ammonium nitrate) (34–0–0). All slow-release fertilizer treatments supplied N at 50 kg N ha–1 pre-plant. Slow-release fertilizer treatments were compared with the industry standard of 50 kg N ha−1 pre-plant plus 50 kg N ha–1 as a top dress. UFLEXX™ increased biological and marketable yield by 7.5 and 18.7%, respectively, compared with the industry standard. Sirflor® produced the lowest yield. GreenSeeker® NDVI reading and LECO N were correlated at the mid-season sample. GreenSeeker® technology has potential as an in-field crop health assessment tool, however, further research is required to develop GreenSeeker® algorithms appropriate for carrot production in Prince Edward Island.


Sign in / Sign up

Export Citation Format

Share Document