scholarly journals Viruses Associated with Cucurbit Production in Southern Illinois

HortScience ◽  
2003 ◽  
Vol 38 (1) ◽  
pp. 65-66 ◽  
Author(s):  
S. Alan Walters ◽  
Jeffrey D. Kindhart ◽  
Houston A. Hobbs ◽  
Darin M. Eastburn

Viruses are a serious threat to cucurbit production in southern Illinois. The most prevalent viruses infecting cucurbit crops in the region were determined during the 1998, 1999, and 2000 growing seasons to enable growers to make better decisions on viral disease management. Watermelon mosaic virus (WMV) was the most prevalent virus as it was found in ≈84% of samples over the three years. Cucumber mosaic virus (CMV), papaya ringspot virus (PRSV), squash mosaic virus (SqMV), and zucchini yellow mosaic virus (ZYMV) were detected in ≈8%, 6%, 9%, and 1% of samples, respectively, over the 3-year period. WMV was generally the only virus isolated from samples collected before mid-September. Other viruses, including CMV, PRSV, SqMV, and ZYMV, were generally first detected after mid-September and were usually found as mixed infections with WMV.

Plant Disease ◽  
2005 ◽  
Vol 89 (5) ◽  
pp. 530-530 ◽  
Author(s):  
Y.-M. Liao ◽  
X.-J. Gan ◽  
B. Chen ◽  
J.-H. Cai

Luohanguo, Siraitia grosvenorii (Swingle) C. Jeffrey, is a perennial cucurbitaceous plant that is an economically important medicinal and sweetener crop in Guangxi province, China. Surveys conducted during the summer to fall seasons of 2003-2004 in northern Guangxi showed symptoms typical of a viral disease, including leaf mottling, mosaic, vein clearing, curling, and shoestring-like distortion in the field. Mechanical inoculation of sap from leaves of symptomatic plants collected from the surveyed areas caused similar symptoms on tissue culture-derived healthy Luohanguo plants. Two sequences of 0.7 and 1.6 kb with 88 and 97% identity to Papaya ringspot virus (PRSV) and Zucchini yellow mosaic virus (ZYMV) were amplified using reverse transcription-polymerase chain reaction (RT-PCR) with purified flexuous viral particles or total RNA extracted from the symptomatic Luohanguo leaves as templates with conserved degenerate potyvirus primers (1). To confirm the results, primers specific for PRSV (PP1/PP2, genome coordinates 4064-4083/5087-5069, GenBank Accession No X97251) and ZYMV (ZP1/ZP2, genome coordinates 5540-5557/7937-7920, GenBank Accession No L31350) were used to perform RT-PCR from the same RNA templates. The expected 1.0- and 2.3-kb fragments were amplified and they were 90 and 95% identical to PRSV and ZYMV in sequence, respectively. Watermelon mosaic virus was not detected. To our knowledge, this is the first report of the occurrence of PRSV and ZYMV in Luohanguo. Reference: (1) A. Gibbs et al. J. Virol. Methods 63:9, 1997.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 471B-471
Author(s):  
S. Alan Walters ◽  
Jeff D. Kindhart ◽  
Houston A. Hobbs ◽  
Darin M. Eastburn

Cucurbit viruses are a major hindrance to cucurbit production in southern Illinois, often rendering cucumber and summer squash fruit unmarketable. Specific viruses infecting cucurbits in the region need to be determined since this would enable growers to make better decisions on virus disease management. Leaf samples of various cucurbit vegetables that had symptoms of viral infection were collected from grower fields during the 1998 and 1999 growing seasons to determine the predominant cucurbit viruses present. Samples were assayed for the presence of five individual viruses: cucumber mosaic virus (CMV), papaya ringspot virus (PRSV, formerly watermelon mosaic virus-1), squash mosaic virus (SqMV), watermelon mosaic virus (WMV, formerly watermelon mosaic virus-2), and zucchini yellow mosaic virus (ZYMV). Results from the two years indicated that WMV was the most prevalent virus in southern Illinois. Cucumber mosaic virus was found both years, but only in a low percentage of samples collected each year. Two cucurbit viruses, PRSV and ZYMV, were each identified only in one sample during the 1998 growing season, and neither were found in any of the samples collected during 1999. Squash mosaic virus was not identified in any of the samples collected during 1998; however, for the 1999 growing season, SqMV was identified in 19% of the samples collected, primarily from those samples of transgenic squash that were showing symptoms of virus infection.


Plant Disease ◽  
1998 ◽  
Vol 82 (9) ◽  
pp. 979-982 ◽  
Author(s):  
Marisol Luis-Arteaga ◽  
José María Alvarez ◽  
José Luis Alonso-Prados ◽  
Juan J. Bernal ◽  
Fernando García-Arenal ◽  
...  

The main areas for field-grown melon (Cucumis melo) production in Spain were surveyed for the occurrence and relative incidence of cucumber mosaic virus (CMV), papaya ringspot virus-watermelon strain (PRSV-W), watermelon mosaic virus-2 (WMV-2), and zucchini yellow mosaic virus (ZYMV) during the growing seasons of 1995 and 1996. Samples from 1,152 plants showing symptoms of virus infection were collected from commercial melon fields and analyzed by enzyme-linked immunosorbent assay (ELISA). CMV and WMV-2 were the most frequently found viruses, both by the number of locations and by their incidence in each location. In contrast, PRSV-W and ZYMV were detected in fewer sites and at lower incidences. PRSV-W was not found in 1996. In 79% of the samples, only one virus was detected; 15% of the samples were doubly infected. Both the incidence of plants showing symptoms of viral infection and the relative incidence of each of the four viruses varied according to the region, while the main trends of virus distribution were similar for 1995 and 1996.


Plant Disease ◽  
2007 ◽  
Vol 91 (3) ◽  
pp. 232-238 ◽  
Author(s):  
M. A. Kassem ◽  
R. N. Sempere ◽  
M. Juárez ◽  
M. A. Aranda ◽  
V. Truniger

Despite the importance of field-grown cucurbits in Spain, only limited information is available about the impact of disease on their production. During the 2003 and 2004 growing seasons, systematic surveys were carried out in open field melon (Cucumis melo) and squash (Cucurbita pepo) crops of Murcia Province (Spain). The fields were chosen with no previous information regarding their sanitation status, and samples were taken from plants showing viruslike symptoms. Samples were analyzed using molecular hybridization to detect Beet pseudo-yellows virus (BPYV), Cucurbit aphid-borne yellows virus (CABYV), Cucumber mosaic virus (CMV), Cucumber vein yellowing virus (CVYV), Cucurbit yellow stunting disorder virus (CYSDV), Melon necrotic spot virus (MNSV), Papaya ringspot virus (PRSV), Watermelon mosaic virus (WMV), and Zucchini yellow mosaic virus (ZYMV). We collected 924 samples from 48 field plots. Out of these, almost 90% were infected by at least one of the viruses considered, usually CABYV, which was present in 83 and 66% of the melon and squash samples, respectively. In the case of melon, CYSDV, BPYV, and WMV followed CABYV in relative importance, with frequencies of around 20 to 30%, while in squash, CVYV and BPYY showed frequencies between 28 and 21%. The number of multiple infections was very high, 66 and 56% of the infected samples of melon and squash, respectively, being afflicted. CABYV was present in all multiple infections. The high incidence of CABYV in single and multiple infections suggests that this virus may well become an important threat for cucurbit crops in the region. Restriction fragment length polymorphism (RFLP) analysis revealed that CABYV isolates can be grouped into two genetic types, both of which seemed to be present during the 2003 epidemic episode, but only one of the types was found in 2004.


1998 ◽  
Vol 8 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Jonathan R. Schultheis ◽  
S. Alan Walters

Yellow and zucchini squash (Cucurbita pepo L.) cultigens (breeding lines and cultivars) were evaluated over a 2-year (1995 and 1996) period in North Carolina. Yellow squash cultigens that performed well (based on total marketable yields) were `Destiny III', `Freedom III', `Multipik', XPHT 1815, and `Liberator III' in Fall 1995 and HMX 4716, `Superpik', PSX 391, `Monet', `Dixie', XPH 1780, and `Picasso' in Spring 1996. Some of the yellow squash cultigens evaluated had superior viral resistance: XPHT 1815, XPHT 1817, `Freedom III', `Destiny III', `Freedom II', TW 941121, `Prelude II', and `Liberator III' in Fall 1995 and XPHT 1815, `Liberator III', `Prelude II', and `Destiny III' in Fall 1996; all these cultigens were transgenic. The yellow squash cultigens that performed well (based on total marketable yields) in the Fall 1995 test had transgenic virus resistance (`Destiny III', `Freedom III', XPHT 1815, and `Liberator III') or had the Py gene present in its genetic background (`Multipik'). Based on total marketable yields, the best zucchini cultigens were XPHT 1800, `Tigress', XPHT 1814, `Dividend' (ZS 19), `Elite', and `Noblesse' in Fall 1995; and `Leonardo', `Tigress', `Hurricane', `Elite', and `Noblesse' in Spring 1996. The zucchini cultigens with virus resistance were TW 940966, XPHT 1814, and XPHT 1800 in Fall 1995 and XPHT 1800, XPHT 1776, XPHT 1777, XPHT 1814, and XPHT 1784 in Fall 1996. Even though TW 940966 had a high level of resistance in the Fall 1995 test, it was not as high yielding as some of the more susceptible lines. Viruses detected in the field were papaya ringspot virus (PRSV) and watermelon mosaic virus (WMV) for Fall 1995; while PRSV, zucchini yellow mosaic virus (ZYMV), and WMV were detected for Fall 1996. Summer squash cultigens transgenic for WMV and ZYMV have potential to improve yield, especially during the fall when viruses are more prevalent. Most transgenic cultigens do not possess resistance to PRSV, except XPHT 1815 and XPHT 1817. Papaya ringspot virus was present in the squash tests during the fall of both years. Thus, PRSV resistance must be transferred to the transgenic cultigens before summer squash can be grown during the fall season without the risk of yield loss due to viruses.


2005 ◽  
Vol 30 (4) ◽  
pp. 394-399 ◽  
Author(s):  
Lindomar M. da Silveira ◽  
Manoel A. de Queiróz ◽  
J. Albérsio de A. Lima ◽  
Maria Z. de Negreiros ◽  
Najara F. Ramos ◽  
...  

Visando selecionar acessos e progênies de melancia (Citrullus spp.) como fontes de resistência aos potyvirus: Papaya ringspot virus tipo watermelon (PRSV-W), Watermelon mosaic virus (WMV) e Zucchini yellow mosaic virus (ZYMV), oito genótipos foram avaliados, sendo seis dos acessos (87-019, 87-029, 91-080, PI-244018, 91-043 e PI-195927) e dois do acesso PI-244019 (PI-244019A e PI-244019B) do Banco Ativo de Germoplasma (BAG) de cucurbitáceas do Nordeste brasileiro, da Embrapa Semi-Árido em Petrolina-PE. Também foram avaliadas progênies endogâmicas e de polinização livre derivadas desses acessos. As avaliações foram realizadas em de casa de vegetação, mediante inoculações mecânicas, e avaliação por Elisa, no Laboratório de Virologia Vegetal da UFC. As plantas não infetadas foram selecionadas e cultivadas na Estação Experimental de Bebedouro na Embrapa Semi-Árido em Petrolina-PE, onde ocorreram inoculações naturais de vírus por vetores. Foram constatadas plantas não infetadas com o PRSV-W nos acessos 87-019, PI-244019A, 91-080, PI-244018, PI-244019B e PI-195927; plantas não infetadas com o WMV nos acessos 87-019 e 87-029 e plantas não infetadas com o ZYMV nos acessos PI-244019A, 87-029, 91-080, 91-043, PI-244019B e PI-195927. As progênies apresentaram comportamento diferenciado, com percentagem de plantas selecionadas variando de 20 a 100% nas progênies avaliadas para resistência a PRSV-W e 60 a 100% nas progênies avaliadas para resistência a WMV. Nenhuma das progênies testadas apresentou resistência ao ZYMV, evidenciando possível diferença entre a resistência ao PRSV-W e ao WMV apresentada nas progênies e a resistência apresentada ao ZYMV, visto que as progênies foram submetidas ao mesmo número de autofecundações.


2010 ◽  
Vol 25 (3) ◽  
pp. 213-230
Author(s):  
Ana Vucurovic ◽  
Aleksandra Bulajic ◽  
Ivana Stankovic ◽  
Danijela Ristic ◽  
Janos Berenji ◽  
...  

Watermelon mosaic virus (WMV) is widespread in cucurbit crops, most commonly occuring in temperate and Mediterranean regions. In Serbia WMV has been detected in single and mixed infections with Zucchini yellow mosaic virus and Cucumber mosaic virus in field-grown pumpkin and squash crops. Among pumpkin-affecting viruses WMV is the most frequent one, both by the number of localities and its incidence at each location. During the growing season of 2009, samples from 583 plants of Cucurbita pepo cvs. Olinka, Belgrade zucchini and Tosca (Zucchini group), as well as from C. maxima and C. moschata showing symptoms of virus infection were collected from 12 commercial fields at eight localities and analyzed by DAS-ELI


HortScience ◽  
1995 ◽  
Vol 30 (2) ◽  
pp. 338-340 ◽  
Author(s):  
T. Wai ◽  
R. Grumet

The inbred cucumber (Cucumis sativus L.) line TMG-1 is resistant to three potyviruses: zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus (WMV), and the watermelon strain of papaya ringspot virus (PRSV-W). In this study we sought to determine the genetics of resistance to PRSV-W. TMG-1 was crossed with WI-2757, an inbred line susceptible to all three viruses. Segregation data indicated that resistance to PRSV-W was due to a single dominant gene (proposed designation, Prsv-2). Enzyme-linked immunosorbent assay (ELISA) data suggested that the mechanism of resistance to PRSV-W differs from that for ZYMV and WMV, and may be better described as tolerance. Although the plants were free of symptoms, high PRSV-W titers existed in young expanding leaves of the TMG-1 plants and the WI-2757 × TMG-1 F1 progeny.


HortScience ◽  
1996 ◽  
Vol 31 (6) ◽  
pp. 913G-914
Author(s):  
Konstantinos Anagnostou ◽  
Molly Kyle ◽  
Rafael Perl-Treves

We have studied the relationship of resistance to watermelon mosaic virus (WMV), zucchini yellow mosaic virus (ZYMV), papaya ringspot virus (PRSV), and powdery mildew (PM) in melon (Cucumis melo). We have confirmed monogenic dominant inheritance of these four resistances and report that PI414723-4S3, which was initially selected as a source of ZYMR, is also a source of dominant monogenic resistance to PRSV. Further, we observed departure from independent assortment for resistance to WMV and ZYMV in a study of 73 (UC Top Mark × PI414723-4S3) F3 families (χ2 = 39.87 significant at both 0.01 and 0.05 levels), indicating linkage between Wmv and Zym. The map distance between these resistance genes calculated from the number of recombinant families (RF% = 9.58) was 10.5 cM. Compari-sons among WMV, PM, ZYMV-PM, PRSV-PM, ZYMV-PRSV, and WMV-PRSV of 48 (TM × PI414723-4S3) F3 families, which were screened with all four pathogens, showed no consistent cosegregation.


1991 ◽  
Vol 42 (3) ◽  
pp. 417 ◽  
Author(s):  
RG Dietzgen ◽  
ME Herrington

The biotin-streptavidin (BA)-ELISA system was optimized for the detection of three potyviruses infecting cucurbits, the watermelon strain of papaya ringspot virus (PRSV-W), zucchini yellow mosaic virus (ZYMV) and watermelon mosaic virus 2. BA-ELISA was four to eight times more sensitive than double antibody sandwich ELISA and detected all three viruses in the nanogram range. BA-ELSA was virus-specific but did not differentiate between different pathotypes of ZYMV. The use of egg-white avidin-enzyme conjugate or the simultaneous incubation of biotinylated antibody and streptavidin-enzyme conjugate decreased the sensitivity of BA-ELISA. The concentrations of PRSV-W and ZYMV in field-infected cucurbit specimens or in resistant breeding lines were estimated from calibration curves derived from a dilution series of purified virus in extracts of uninfected plants on each test plate. Thus it was possible to determine semi-quantitatively the degree and uniformity of resistance in plants from these lines and to differentiate resistant from tolerant selections.


Sign in / Sign up

Export Citation Format

Share Document