scholarly journals Growth and Water Relations of Littleleaf Linden Trees Established in Irrigated Buffalograss and Kentucky Bluegrass

HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1529-1533 ◽  
Author(s):  
J. Ryan Stewart ◽  
Roger Kjelgren ◽  
Paul G. Johnson ◽  
Michael R. Kuhns

Although transplanted trees typically establish and grow without incident in frequently irrigated turfgrass, their performance in precisely irrigated turfgrass in an arid climate is not known. We investigated the effect of precision irrigation scheduling on growth and water relations of balled-and-burlapped littleleaf linden (Tilia cordata Mill. `Greenspire') planted in buffalograss (Buchloë dactyloides [Nutt.] Engelm. `Tatanka') and kentucky bluegrass (Poa pratensis L.). Over 2 years, trees in turfgrass were irrigated either by frequent replacement based on local reference evapotranspiration, or precision irrigated by estimating depletion of soil water to the point of incipient water stress for each turfgrass species. Predawn leaf water potential and stomatal conductance of trees were measured during first-year establishment, and predawn leaf water potential was measured during a mid-season water-deficit period during the second year. Trunk diameter growth and total tree leaf area were measured at the end of each year. Values of predawn leaf water potential and stomatal conductance of trees in precision-irrigated buffalograss were lower (–0.65 MPa, 25.3 mmol·m–2·s–1) than those of trees in the other treatments near the end of the first growing season. The longer interval between precision irrigations resulted in mild water stress, but was not manifested in growth differences among trees across treatments during the first season. During the water-deficit period of the second year, there was no evidence of stress among the trees regardless of treatment. At the end of the second season, total leaf area of trees grown in precision-irrigated kentucky bluegrass (1.10 ± 0.34 m2) was 46% of that of trees grown in buffalograss (2.39 ± 0.82 m2) that were irrigated frequently. Trunk diameter growth of trees in frequently irrigated kentucky bluegrass (1.91 ± 2.65 mm) was 29% of that of the trees grown in buffalograss (6.68 ± 1.68 mm), regardless of irrigation treatment, suggesting a competition effect from kentucky bluegrass. We conclude that frequent irrigation of balled-and-burlapped trees in turfgrass, particularly buffalograss, is more conducive to tree health during establishment than is maximizing the interval between turfgrass irrigation. Regardless of irrigation schedule, kentucky bluegrass appears to impact tree growth severely during establishment in an arid climate.

2004 ◽  
Vol 16 (3) ◽  
pp. 155-161 ◽  
Author(s):  
Mara de Menezes de Assis Gomes ◽  
Ana Maria Magalhães Andrade Lagôa ◽  
Camilo Lázaro Medina ◽  
Eduardo Caruso Machado ◽  
Marcos Antônio Machado

Thirty-month-old 'Pêra' orange trees grafted on 'Rangpur' lemon trees grown in 100 L pots were submitted to water stress by the suspension of irrigation. CO2 assimilation (A), transpiration (E) and stomatal conductance (g s) values declined from the seventh day of stress, although the leaf water potential at 6:00 a.m. (psipd) and at 2:00 p.m. (psi2) began to decline from the fifth day of water deficiency. The CO2 intercellular concentration (Ci) of water-stressed plants increased from the seventh day, reaching a maximum concentration on the day of most severe stress. The carboxylation efficiency, as revealed by the ratio A/Ci was low on this day and did not show the same values of non-stressed plants even after ten days of rewatering. After five days of rewatering only psi pd and psi2 were similar to control plants while A, E and g s were still different. When psi2 decreases, there was a trend for increasing abscisic acid (ABA) concentration in the leaves. Similarly, stomatal conductance was found to decrease as a function of decreasing psi2. ABA accumulation and stomatal closure occurred when psi2 was lower than -1.0 MPa. Water stress in 'Pera´ orange trees increased abscisic acid content with consequent stomatal closure and decreased psi2 values.


1980 ◽  
Vol 16 (1) ◽  
pp. 21-27 ◽  
Author(s):  
D. Kumar ◽  
Larry L. Tieszen

SUMMARYExperiments were carried out to relate soil moisture to leaf water potential (Ψ1), and to determine the effects of varying Ψ1, on leaf conductances and photosynthesis in coffee. Stomatal conductance was maximum at 0900 h, but plants growing in drier soil showed marked mid-day stomatal closure. After 1500 h, stomata began closing although plant water status improved. Photosynthesis in relation to changing Ψ1 appeared to exhibit roughly three different rates. At the fixed experimental temperature (25°C) low Ψ1 reduced photosynthesis throughits influence on stomata, but under field conditions low Ψ1 and an accompanying rise in temperature could lower the rate by lowering both mesophyll and stomatal conductances.


2006 ◽  
Vol 131 (6) ◽  
pp. 709-715 ◽  
Author(s):  
Jun Ying Zhao ◽  
Li Jun Wang ◽  
Pei Ge Fan ◽  
Zhan Wu Dai ◽  
Shao Hua Li

Half or whole root systems of micropropagated `Gala' apple (Malus ×domestica Borkh.) plants were subjected to drought stress by regulating the osmotic potential of the nutrient solution using polyethylene glycol (20% w/v) to investigate the effect of root drying on NO3- content and metabolism in roots and leaves and on leaf photosynthesis. No significant difference in predawn leaf water potential was found between half root stress (HRS) and control (CK), while predawn leaf water potential from both was significantly higher than for the whole root stress (WRS) treatment. However, diurnal leaf water potential of HRS was lower than CK and higher than WRS during most of the daytime. Neither HRS nor WRS influenced foliar NO3- concentration, but both significantly reduced NO3- concentration in drought-stressed roots as early as 4 hours after stress treatment started. This reduced NO3- concentration was maintained in HRS and WRS roots to the end of the experiment. However, there were no significant differences in NO3- concerntation between CK roots and unstressed roots of HRS. Similar to the effect on root NO3- concentration, both HRS and WRS reduced nitrate reductase activity in drought-stressed roots. Moreover, leaf net photosynthesis, stomatal conductance and transpiration rate of HRS plants were reduced significantly throughout the experiment when compared with CK plants, but the values were higher than those of WRS plants in the first 7 days of stress treatment though not at later times. Net photosynthesis, stomatal conductance and transpiration rate were correlated to root NO3- concentration. This correlation may simply reflect the fact that water stress affected both NO3- concentration in roots and leaf gas exchange in the same direction.


2018 ◽  
Vol 42 (2) ◽  
pp. 717-729 ◽  
Author(s):  
Juan Rodríguez-Gamir ◽  
Jianming Xue ◽  
Michael J. Clearwater ◽  
Dean F. Meason ◽  
Peter W. Clinton ◽  
...  

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1136a-1136
Author(s):  
Roger Kjelgren ◽  
Bradley H. Taylor

The response of foliage-air temperature differential (Tl-Ta) to vapor-pressure deficit (VPD) as a means of detecting incipient water stress was investigated in the Illinois planting of the NC-140 Uniform Peach Rootstock Trial. Stomatal conductance, foliage temperature, leaf water potential, air temperature and VPD were followed diurnally on three dates in 1989 for mature `Redhaven' on six different rootstock. On two of three sampling dates where predawn leaf water potential was greater than -0.5 MPa there was no indication of midday stomatal closure and all rootstock exhibited an inverse relationship between T1-Ta and VPD. On the date with the most negative predawn leaf water potential, T1-Ta of two plum rootstock (GF-677 and GF-655-2) was observed to be significantly greater at VPD levels above 2 kPa than the remaining rootstock. All rootstock on this date exhibited greater T1-Ta than at similar VPD levels on the other two dates. These data suggest that transpirational cooling plays a large enough role in foliage temperature regulation of `Redhaven' peach such that incipient water stress and rootstock effects on water relations can be detected through increases in foliage temperature.


HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 763-768
Author(s):  
Thayne Montague ◽  
Roger Kjelgren ◽  
Larry Rupp

Gas exchange and growth of transplanted and nontransplanted, field-grown Norway maple (Acer platanoides L. `Schwedleri') and littleleaf linden (Tilia cordata Mill. `Greenspire') trees were investigated in an arid climate. In the spring of 1995, three trees of each species were moved with a tree spade to a new location within a field nursery and three nontransplanted trees were selected as controls. Predawn leaf water potential, morning-to-evening stomatal conductance and leaf temperature, leaf-to-air vapor pressure difference, midday stomatal conductance and photosynthetic rate, and growth data were collected over a 2-year period. After transplanting, weekly predawn leaf water potential indicated that transplanted trees were under greater water stress than were nontransplanted (control) trees. However, predawn leaf water potential of maple trees recovered to control levels 18 weeks after transplanting, while that of transplanted linden trees remained more negative than that of controls. In 1995, stomatal conductance and photosynthetic rates were lower throughout the day for transplanted trees. In 1996, gas exchange rates of transplanted maple trees recovered to near control levels while rates for transplanted linden trees did not. Sensitivity of stomata to leaf-to-air vapor pressure difference varied with species and with transplant treatment. Each year transplanted trees of both species had less apical growth than did control trees. Although gas exchange and apical growth of transplanted trees was reduced following transplanting, recovery of gas exchange to control rates differed with species.


1984 ◽  
Vol 64 (3) ◽  
pp. 537-546 ◽  
Author(s):  
L. M. DWYER ◽  
D. W. STEWART

Greenhouse experiments were conducted to monitor the response of corn (Zea mays L.) to water stress conditions during and following tasselling, and to compare several indicators of water stress. Daily measurements of soil water content and of evaporative demand were made. The degree of plant water stress was indicated by estimates of minimum daily stomatal resistance, comparison of estimated actual and potential transpiration rates, diurnal patterns of leaf water potential and predawn leaf water potentials taken on lower leaves. Analysis of the series of measurements necessary to estimate minimum daily stomatal resistance, actual to potential transpiration rate ratios, and diurnal patterns of leaf water potential identified periods of relative water stress. The simpler and less time-consuming measurement of predawn leaf water potential compared favorably with these other indicators of water stress. We therefore suggest that predawn leaf water potential is an appropriate diagnostic measurement of water stress with promise for irrigation scheduling, particularly for crops in which irrigation is important for a short but critical period.Key words: Leaf water potential, stomatal resistance, transpiration, vapor pressure deficit, soil water deficit


Sign in / Sign up

Export Citation Format

Share Document