Photosynthesis in Coffea arabica. II. Effects of Water Stress

1980 ◽  
Vol 16 (1) ◽  
pp. 21-27 ◽  
Author(s):  
D. Kumar ◽  
Larry L. Tieszen

SUMMARYExperiments were carried out to relate soil moisture to leaf water potential (Ψ1), and to determine the effects of varying Ψ1, on leaf conductances and photosynthesis in coffee. Stomatal conductance was maximum at 0900 h, but plants growing in drier soil showed marked mid-day stomatal closure. After 1500 h, stomata began closing although plant water status improved. Photosynthesis in relation to changing Ψ1 appeared to exhibit roughly three different rates. At the fixed experimental temperature (25°C) low Ψ1 reduced photosynthesis throughits influence on stomata, but under field conditions low Ψ1 and an accompanying rise in temperature could lower the rate by lowering both mesophyll and stomatal conductances.

2004 ◽  
Vol 16 (3) ◽  
pp. 155-161 ◽  
Author(s):  
Mara de Menezes de Assis Gomes ◽  
Ana Maria Magalhães Andrade Lagôa ◽  
Camilo Lázaro Medina ◽  
Eduardo Caruso Machado ◽  
Marcos Antônio Machado

Thirty-month-old 'Pêra' orange trees grafted on 'Rangpur' lemon trees grown in 100 L pots were submitted to water stress by the suspension of irrigation. CO2 assimilation (A), transpiration (E) and stomatal conductance (g s) values declined from the seventh day of stress, although the leaf water potential at 6:00 a.m. (psipd) and at 2:00 p.m. (psi2) began to decline from the fifth day of water deficiency. The CO2 intercellular concentration (Ci) of water-stressed plants increased from the seventh day, reaching a maximum concentration on the day of most severe stress. The carboxylation efficiency, as revealed by the ratio A/Ci was low on this day and did not show the same values of non-stressed plants even after ten days of rewatering. After five days of rewatering only psi pd and psi2 were similar to control plants while A, E and g s were still different. When psi2 decreases, there was a trend for increasing abscisic acid (ABA) concentration in the leaves. Similarly, stomatal conductance was found to decrease as a function of decreasing psi2. ABA accumulation and stomatal closure occurred when psi2 was lower than -1.0 MPa. Water stress in 'Pera´ orange trees increased abscisic acid content with consequent stomatal closure and decreased psi2 values.


1989 ◽  
Vol 16 (6) ◽  
pp. 549 ◽  
Author(s):  
SL Steinberg ◽  
MJ Mcfarland ◽  
JC Miller

A gradation, that reflects the maturity of the leaves, exists in the leaf water, osmotic and turgor potential and stomatal conductance of leaves along current and 1-year-old branches of peach. Predawn leaf water potentials of immature folded leaves were approximately 0.24 MPa lower than mature leaves under both well-watered and dry conditions. During the daytime the leaf water potential of immature leaves reflected the water potential produced by water flux for transpiration. In well- watered trees, mature and immature unfolded leaves had a solute potential at least 0.5 MPa lower than immature folded leaves, resulting in a turgor potential that was approximately 0.8 MPa higher. The turgor requirement for growth appeared to be much less than that maintained in mature leaves. As water stress developed and leaf water potentials decreased, the osmotic potential of immature folded leaves declined to the level found in mature leaves, thus maintaining turgor. In contrast, mature leaves showed little evidence of turgor maintenance. Stomatal conductance was lower in immature leaves than in fully mature leaves. With the onset of water stress, conductance of mature leaves declined to a level near that of immature leaves. Loss of turgor in mature leaves may be a major factor in early stomatal closure. It was concluded that osmotic adjustment played a role in maintenance of a leaf water status favorable for some growth in water-stressed immature peach leaves.


1988 ◽  
Vol 110 (2) ◽  
pp. 271-277 ◽  
Author(s):  
S. Sarig ◽  
A. Blum ◽  
Y. Okon

SummaryThe effect of inoculation withAzospirillum brasilenseon growth, water status and yield of dryland sorghum (cv. RS 610 and cv. H-226) growing on stored soil moisture was examined in three field experiments conducted during the years 1983–5.Plants were sampled at regular intervals, and the following characteristics were measured: dry-matter accumulation, leaf area, grain yield, percentage nitrogen and phosphorus in leaves, leaf water potential, canopy temperature, transpiration, stomatal conductance and soil water depletion.Inoculation led to an average increase of 19% in total stover dry-matter yield, as a result of higher rates of dry-matter accumulation during the early stages of growth.Azospirilluminoculation caused a 15–18% increase in grain yield in all three experiments. This increase was associated with a greater number of seeds per panicle.The water regime of sorghum plants was improved by inoculation, as seen in their higher leaf water potential, lower canopy temperatures and greater stomatal conductance and transpiration. Total extraction of soil moisture by inoculated plants was greater (by about 15%) and occurred from deeper soil layers, compared with non-inoculated controls.These findings indicate that inoculation withAzospirillumcan lead to yield increases in dryland grain sorghum, primarily through improved utilization of soil moisture.


2021 ◽  
Author(s):  
Fabian Wankmüller ◽  
Mohsen Zarebanadkouki ◽  
Andrea Carminati

<p>Predicting plant responses to drought is a long-standing research goal. Since stomata regulate gas-exchange between plants and the atmosphere, understanding their response to drought is fundamental. Current predictions of stomatal behavior during drought mainly rely on empirical models. These models may suit well to a specific set of plant traits and environmental growth conditions, but their predictive value is doubtful when atmospheric and soil conditions change. Stomatal optimization offers an alternative framework to predict stomatal regulation in response to drought for varying environmental conditions and plant traits. Models which apply this optimization principle posit that stomata maximize the carbon gain in relation to a penalty caused by water loss, such as xylem cavitation. Optimization models have the advantage of requiring a limited number of parameters and have been successfully used to predict stomatal response to drought for varying environmental conditions and species. However, a mechanism that enables stomata to optimally close in response to water limitations, and more precisely to a drop in the ability of the soil-plant continuum to sustain the transpiration demand, is not known. Here, we propose a model of stomatal regulation that is linked to abscisic acid (ABA) dynamics (production, degradation and transport) and that allows plants to avoid excessive drops in leaf water potential during soil drying and increasing vapor pressure deficit (VPD). The model assumes that: 1) stomatal conductance (g<sub>s</sub>) decreases when ABA concentration close to the guard cells (C<sub>ABA</sub>) increases; 2) C<sub>ABA</sub> increases with decreasing leaf water potential (due to higher production); and 3) C<sub>ABA</sub> decreases with increasing photosynthesis (e.g. due to faster degradation or transport to the phloem). Our model includes simulations of leaf water potential based on transpiration rate, soil water potential and variable hydraulic conductances of key elements (rhizosphere, root and xylem), and a function linking stomatal conductance to assimilation. It was tested for different soil properties and VPD. The model predicts that stomata close when the relation between assimilation and leaf water potential becomes nonlinear. In wet soil conditions and low VPD, when there is no water limitation, this nonlinearity is controlled by the relation between stomatal conductance and assimilation. In dry soil conditions, when the soil hydraulic conductivity limits the water supply, nonlinearity is controlled by the excessive drop of leaf water potential for increasing transpiration rates. The model predicts different relations between stomatal conductance and leaf water potential for varying soil properties and VPD. For instance, the closure of stomata is more abrupt in sandy soil, reflecting the steep decrease in hydraulic conductivity of sandy soils. In summary, our model results in an optimal behavior, in which stomatal closure avoids excessive (nonlinear) decrease in leaf water potential, similar to other stomatal optimization models. As based on ABA concentration which increases with decreasing leaf water potential but declines with assimilation, this model is a preliminary attempt to link optimization models to a physiological mechanism.</p>


2020 ◽  
Vol 40 (4) ◽  
pp. 425-432
Author(s):  
Matthew Lanning ◽  
Lixin Wang ◽  
Kimberly A Novick

Abstract Accurate understanding of plant responses to water stress is increasingly important for quantification of ecosystem carbon and water cycling under future climates. Plant water-use strategies can be characterized across a spectrum of water stress responses, from tight stomatal control (isohydric) to distinctly less stomatal control (anisohydric). A recent and popular classification method of plant water-use strategies utilizes the regression slope of predawn and midday leaf water potentials, σ, to reflect the coupling of soil water availability (predawn leaf water potential) and stomatal dynamics (daily decline in leaf water potential). This type of classification is important in predicting ecosystem drought response and resiliency. However, it fails to explain the relative stomatal responses to drought of Acer sacharrum and Quercus alba, improperly ranking them on the spectrum of isohydricity. We argue this inconsistency may be in part due to the cuticular conductance of different species. We used empirical and modeling evidence to show that plants with more permeable cuticles are more often classified as anisohydric; the σ values of those species were very well correlated with measured cuticular permeance. Furthermore, we found that midday leaf water potential in species with more permeable cuticles would continue to decrease as soils become drier, but not in those with less permeable cuticles. We devised a diagnostic parameter, Γ, to identify circumstances where the impact of cuticular conductance could cause species misclassification. The results suggest that cuticular conductance needs to be considered to better understand plant water-use strategies and to accurately predict forest responses to water stress under future climate scenarios.


1984 ◽  
Vol 102 (3) ◽  
pp. 687-693 ◽  
Author(s):  
Alejandra Paez ◽  
H. Hellmers ◽  
B. R. Strain

SummaryIf atmospheric carbon dioxide concentration continues to increase, plant growth and crop yield could be affected. New Yorker and Better Boy cultivars of tomato (Lycopersicon esculentum) were used to investigate possible intraspecific variation in the response of crop species to increased CO2. Because precipitation and temperature are predicted to change with the increasing atmospheric CO2 concentration, the response of the two cultivars to the interaction between CO2 and water stress was also examined. Seeds of the two cultivars were germinated and grown under controlled environmental conditions, in either 350 or 675 μ1 CO2/1.The plant water status of the two cultivars was inherently different but was little affected by the CO2 concentration when the plants were well watered. When water was withheld for 5 days the total leaf water potential and osmotic potential decreased in both CO2 treatments but less rapidly in high CO2 than in low. Under low CO2 total leaf water potential decreased to a lower value than osmotic potential. The differences were due, at least in part, to the reduced stomatal conductance and transpiration rate under high CO2.Increased CO2 ameliorated the detrimental effects of drought stress on plant growth. The results indicate that increased CO2 could differentially affect the relative drought resistance of species cultivars.


1983 ◽  
Vol 10 (2) ◽  
pp. 119 ◽  
Author(s):  
MM Ludlow ◽  
ACP Chu ◽  
RJ Clements ◽  
RG Kerslake

The responses to water stress of five accessions representing four species of the legume Centrosema from contrasting moisture environments were compared under controlled conditions with those of Macroptilium atropurpureum cv. Siratro, a species which avoids dehydration. Species of Centrosema were able to tolerate leaf water potentials as low as -8 to -12 MPa, and all showed osmotic and stomatal adjustment. However, they differed in the tolerance of their leaves to water stress and in the leaf water potential at which stomata were effectively closed. There was a strong positive relationship between water stress tolerance of leaves and the leaf water potential for effective stomatal closure, among the Centrosema accessions and Siratro. The results are consistent with the natural ecological distribution of the species and their behaviour in different moisture environments in northern and north-eastern Australia.


1989 ◽  
Vol 16 (3) ◽  
pp. 241 ◽  
Author(s):  
NZ Saliendra ◽  
FC Meinzer

Stomatal conductance, leaf and soil water status, transpiration, and apparent root hydraulic conductance were measured during soil drying cycles for three sugarcane cultivars growing in containers in a greenhouse. At high soil moisture, transpiration and apparent root hydraulic conductance differed considerably among cultivars and were positively correlated, whereas leaf water potential was similar among cultivars. In drying soil, stomatal and apparent root hydraulic conductance approached zero over a narrow (0.1 MPa) range of soil water suction. Leaf water potential remained nearly constant during soil drying because the vapor phase conductance of the leaves and the apparent liquid phase conductance of the root system declined in parallel. The decline in apparent root hydraulic conductance with soil drying was manifested as a large increase in the hydrostatic pressure gradient between the soil and the root xylem. These results suggested that control of stomatal conductance in sugarcane plants exposed to drying soil was exerted primarily at the root rather than at the leaf level.


1997 ◽  
Vol 45 (2) ◽  
pp. 241 ◽  
Author(s):  
L. D. Prior ◽  
D. Eamus ◽  
G. A. Duff

Seasonal and diurnal trends in carbon assimilation, stomatal conductance and leaf water potential were studied using 1–3 m tall saplings of Eucalyptus tetrodonta (F.Muell.). The study site was in an unburnt savanna near Darwin, where rainfall is strongly seasonal. Mean daily maximum assimilation rates ranged from 14.5 µmol m-2 s-1 in May to 4.8 µmol m-2 s-1 in October. There was a linear relationship between daily maximum assimilation rates and pre-dawn leaf water potential (r = 0.62, n = 508) and a log–log linear relationship between daily maximum stomatal conductance and pre-dawn leaf water potential (r = 0.68, n = 508). Assimilation rates and stomatal conductance were always higher in the morning than in the afternoon, irrespective of season. Stomatal conductance responded more strongly to leaf-to-air vapour pressure difference when pre-dawn leaf water potentials were moderately low (–0.5 to –1.5 MPa) than when they were very low (< –1.5 MPa) or high (> –0.5 MPa). Assimilation decreased sharply when temperature exceeded 35˚C. Seasonal trends in assimilation rate could be attributed primarily to stomatal closure, but diurnal trends could not. High leaf temperatures were a major cause of lower assimilation rates in the afternoon. Approximately 90% of leaves were lost by the end of the dry season, and above-ground growth was very slow. It is hypothesised that E. tetrodonta saplings allocate most photosynthate to root and lignotuber growth in order to tolerate seasonal drought and the high frequency of fire in northern Australian savannas.


Sign in / Sign up

Export Citation Format

Share Document