scholarly journals Genetic Relationships of Spathiphyllum Cultivars Analyzed by AFLP Markers

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 968A-968 ◽  
Author(s):  
Jianjun Chen ◽  
Richard J. Henny ◽  
Pachanoor S. Devanand ◽  
Chih-Cheng T. Chao

Peace lily (Spathiphyllum Schott) is one of the most popular tropical ornamental foliage plants and is used worldwide for interiorscaping. However, little information is available on the genetic relationships of cultivars. Using amplified fragment length polymorphism (AFLP) markers with near-infrared fluorescence-labeled primers, this study analyzed genetic relatedness of 63 commercial cultivars and breeding lines. Forty-eight EcoRI + 2/MseI + 3 primer set combinations were initially screened, from which six primer sets were selected and used in this investigation. All cultivars were clearly differentiated by their AFLP fingerprints, and the relationships were analyzed using the unweighted pair-group method of arithmetic average cluster analysis (UPGMA). The 63 cultivars were divided into four clusters. All commercial cultivars or breeding lines resulted from crosses of some of the cultivars, a total of 45, were positioned in cluster I with Jaccard's similarity coefficients between 0.61 and 0.88. There was only one cultivar in cluster II. Cluster III contained 16 cultivars; they are either species or breeding lines generated from interspecific hybridization. Cluster IV had one unknown species. This study provides genetic evidence as to why cultivars from cluster I and III are not readily crossable because the Jaccard's similarity coefficient between the two clusters was only 0.35. Results also indicate that commercial cultivars are genetically close. Strategies for increasing genetic diversity of cultivated peace lily should be sought for future breeding efforts.

2004 ◽  
Vol 129 (5) ◽  
pp. 690-697 ◽  
Author(s):  
Pachanoor S. Devanand ◽  
Jianjun Chen ◽  
Richard J. Henny ◽  
Chih-Cheng T. Chao

Philodendrons (Philodendron Schott) are among the most popular tropical ornamental foliage plants used for interior decoration. However, limited information is available on the genetic relationships among popular Philodendron species and cultivars. This study analyzed genetic similarity of 43 cultivars across 15 species using amplified fragment length polymorphism (AFLP) markers with near infrared fluorescence labeled primers. Forty-eight EcoR I + 2/Mse I + 3 primer set combinations were screened, from which six primer sets were selected and used in this investigation. Each selected primer set generated 96 to 130 scorable fragments. A total of 664 AFLP fragments were detected, of which 424 (64%) were polymorphic. All cultivars were clearly differentiated by their AFLP fingerprints, and the relationships were analyzed using the unweighted pair-group method of arithmetic average cluster analysis (UPGMA) and principal coordinated analysis (PCA). The 43 cultivars were divided into five clusters. Cluster I comprises eight cultivars with arborescent growth style. Cluster II has only one cultivar, `Goeldii'. There are 16 cultivars in cluster III, and most of them are self-heading interspecific hybrids originated from R.H. McColley's breeding program in Apopka, Fla. Cluster IV contains 13 cultivars that exhibit semi-vining growth style. Cluster V has five cultivars that are true vining in morphology, and they have lowest genetic similarity with philodendrons in other clusters. Cultivated philodendrons are generally genetically diverse except the self-heading hybrids in cluster III that were mainly developed using self-heading and semi-vining species as parents. Seven hybrid cultivars have Jaccard's similarity coefficients of 0.88 or higher, suggesting that future hybrid development needs to select parents with diverse genetic backgrounds.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 861C-861 ◽  
Author(s):  
Pachanoor S. Devanand ◽  
C. Thomas Chao* ◽  
Jianjn Chen ◽  
Richard J. Henny

Anthurium is the largest genus in the family Araceae, consisting of about 1000 species. Anthuriums are valued for their colorful spathes and traditionally used as cut flowers. With the introduction of compact cultivars through breeding, a series of container-grown cultivars have been released and widely produced as flowering foliage plants. However, limited information is available about genetic relatedness among these container-grown cultivars. This study analyzed genetic relationships of 58 cultivars using amplified fragment length polymorphism (AFLP) markers with near infrared fluorescence labeled primers. Forty-eight EcoR I + 2/Mse I + 3 primer set combinations were screened from which six primer sets were selected and used in this investigation. Each selected primer set generated 94 to 115 scorable fragments. A total of 647 AFLP fragments were detected of which 401 were polymorphic (67%). All cultivars were clearly differentiated by their AFLP finger-prints. A dendrogram was constructed using the unweighted pair-group method of arithmetic averages (UPGMA) technique and a principal coordinated analysis (PCA) was used to analyze the relationships. The 58 cultivars were divided into three clusters; clusters I, II, and III had 40, 10, and 8 cultivars, respectively. Most commonly grown cultivars were positioned in cluster I, where had Jaccard similarity coefficients among them ranged from 0.7 to 0.98. Eighteen of the 40 shared Jaccard similarity coefficient of 0.8 or higher, indicating that genetic diversity for cultivated container-grown Anthurium is needed.


2009 ◽  
Vol 8 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Karen Harris ◽  
William Anderson ◽  
Ravindra Malik

Pennisetum purpureum Schum. (napiergrass) is a perennial grass used for forage especially in South America and Africa. Over the last 30 years, a USDA–ARS nursery containing accessions collected from all over the world has been established in Tifton, Georgia. The study reported here was conducted to assess the molecular genetic variation and genetic relatedness among 89 accessions from the Tifton nursery using amplified fragment length polymorphism markers, morphological data and ploidy level. Using 218 polymorphic markers from eight selective primer combinations, the 89 accessions were clustered into five groups using a principal components analysis and a dendrogram based on Dice similarity estimates and unweighted pair group method with arithmetic average clustering. These five groups include three groups collected from Kenya, a group from Puerto Rico, and accessions derived from the cultivar Merkeron. This research provides the first molecular characterization of the Tifton nursery, displays the relationships between accessions, and provides potential heterotic groups for napiergrass and pearl millet (Pennisetum glaucum (L.) R. Br.) breeding improvement.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 998A-998 ◽  
Author(s):  
Jinggui Fang ◽  
Panchanoor S. Devanand ◽  
Chih Cheng T. Chao ◽  
Philip A. Roberts ◽  
Jeff D. Ehlers

Cowpea (2n=2x=22) is a high protein, short-cycle, and essential legume food crop of the tropics, especially in the low input agricultural areas of sub-Saharan Africa, Asia, and South America. Lack of genetic diversity within breeding programs can limit long-term gains from selection. The cowpea gene pool is thought to be narrow and the genetic diversity within breeding programs could be even less diverse. Genetic relationships among 87 cowpea accessions, including 60 advanced breeding lines from six breeding programs in Africa and the United States, and 27 accessions from Africa, Asia, and South America were examined using amplified fragment length polymorphism (AFLP) markers with six near-infrared fluorescence labeled EcoR I + 3/Mse I + 3 primer sets. A total of 382 bands were scored among the accessions with 207 polymorphic bands (54.2%). Overall, the 87 cowpea accessions have narrow genetic basis and they shared minimum 86% genetic similarities. The data also show that the advanced breeding lines of different programs have higher genetic affinities with lines from the same program but not with lines from other programs. The results suggest that there is a need to incorporate additional germplasm of different genetic background into these breeding lines and to ensure the long-term genetic gains of the programs.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 888A-888
Author(s):  
Jianjun Chen* ◽  
Richard Henny ◽  
C. Thomas Chao ◽  
Pachanoor Devanand

Calathea, the largest genus in the family Marantaceae, is composed of 100 species native to tropical America in moist or swampy forest habitats. Because of their brilliant patterns of leaf color and different textures plus ability to tolerate low light levels, calatheas have been widely produced as ornamental foliage plants for interiorscaping. Thus far, genetic relationships among its species and cultivars have not been documented. This study analyzed the relationships of 34 cultivars across 14 species using amplified fragment length polymorphism (AFLP) markers. Six EcoR I + 2/Mse I + 3 primer set combinations were used in this investigation. Each selected primer set generated 105 to 136 scorable fragments. A total of 733 AFLP fragments were detected of which 497 were polymorphic (68%). A dendrogram was constructed using the unweighted pair-group method of arithmetic averages (UP-GMA) technique and a principal coordinated analysis (PCOA) was used to analyze the relationships. The 34 cultivars were divided into four clusters. Cluster I had 19 cultivars derived from C. roseo-picta and C. loesnerii with Jaccard's similarity coefficients from 0.74 to 0.97, of which six are somaclonal variants or sports and two cultivars are genetic identical. Only C. kennedeae `Helen' is positioned in cluster II. Cluster III had 10 cultivars across seven species; Jaccard's similarity coefficients among them varied from 0.41 to 0.63. Four species were situated in cluster IV with Jaccard's similarity between 0.27 to 0.41. Results from this study indicate that broadening of genetic diversity is needed for cultivars in cluster I as they are the most commonly grown calatheas but genetically are very close.


2004 ◽  
Vol 129 (1) ◽  
pp. 81-87 ◽  
Author(s):  
Jianjun Chen ◽  
Richard J. Henny ◽  
David J. Norman ◽  
Pachanoor S. Devanand ◽  
Chih-Cheng T. Chao

Dieffenbachia Schott is an important ornamental foliage plant genus. A total of 30 species has been recognized, but most cultivars come from or are related to a single species, D. maculata (Lodd.) G. Don. At least 11 of the cultivars are sports or somaclonal variants. As a result, the potential lack of genetic diversity in cultivated Dieffenbachia has become a concern. However, no research has been conducted to determine the genetic relatedness of the cultivars. This study analyzed the genetic similarity of 42 Dieffenbachia cultivars using amplified fragment length polymorphism (AFLP) markers. Six primer sets, selected from an initial screening of 48, generated a total of 453 scorable AFLP fragments of which 323 (71%) are polymorphic. All cultivars were clearly differentiated by their AFLP fingerprints. A dendrogram was constructed using the unweighted pair-group method of arithmetic averages, and principal coordinated analysis was carried out to show multiple dimensions of the distribution of the cultivars. The 42 cultivars were divided into three clusters; clusters I and II comprise 18 and 23 cultivars, respectively. Jaccard's similarity coefficients for cultivars in the clusters I and II varied from 0.44 to 0.95 and 0.41 to 0.87, respectively. These results indicate that broadening the genetic variability in the Dieffenbachia gene pool is needed, but the genetic similarity of many cultivars is not as close as previously thought. Additionally, Jaccard's similarity coefficients between most sports or somaclonal variants and their parents were 0.73 or lower, suggesting that accumulation of somatic mutations through tissue culture may play a role in the increased variation between some sports or variants and their parents.


2004 ◽  
Vol 1 (2) ◽  
pp. 73-78 ◽  
Author(s):  
Shang Hai-Ying ◽  
Zheng You-Liang ◽  
Wei Yu-Ming ◽  
Wu Wei ◽  
Yan Ze-Hong

AbstractGenetic diversity and relationships among 21 accessions of Secale L., including three species and 10 subspecies, were evaluated using RAMP markers. Forty-one out of 80 (50.5%) RAMP primers, which produced clear and polymorphic bands, were selected for PCR amplification of genomic DNA. A total of 446 bands were amplified from the 41 primers, and 428 of these bands (about 96%) were polymorphic. Three to 19 polymorphic bands could be amplified from each primer, with an average of 10.4 bands. The RAMP-based genetic similarity (GS) values among the 21 Secale accessions ranged from 0.266 to 0.658, with a mean of 0.449. A high level of genetic variation was found between or within the wild populations and the cultivars. Based on the GS matrix, a dendrogram was constructed using the unweighted pair group method with arithmetic average (UPGMA). All 21 accessions could be distinguished by RAMP markers. Clustering results showed that the genetic diversity of Secale based on RAMP markers was correlated with geographical distribution. Six rye cultivars, originating from Poland, Portugal, Mexico, Hungary, Armenia and Ukraine, were clustered into one group. The six countries are all located in the transitional region of broad-leaf forests between maritime and continental temperate zones, with narrow latitude span. In comparison, the other five cultivars from countries scattered over a region with large latitude span were distributed within different groups or subgroups. Genetic relationships based on RAMP markers had great deviation from the original taxonomy. Some subspecies of the same species were distributed within different groups, while some accessions of different species were closely clustered into one subgroup. These results suggest that RAMP markers could be an effective technique for detecting genetic diversity among Secale and give some useful information about its phylogenic relationships.


2013 ◽  
Vol 93 (6) ◽  
pp. 1089-1096 ◽  
Author(s):  
Shiyong Chen ◽  
Xinquan Zhang ◽  
Xiao Ma ◽  
Linkai Huang

Chen, S., Zhang, X., Ma, X. and Huang, L. 2013. Assessment of genetic diversity and differentiation of Elymus nutans indigenous to Qinghai–Tibet Plateau using simple sequence repeats markers. Can. J. Plant Sci. 93: 1089–1096. Elymus nutans Griseb., an important alpine forage grass, is widely distributed in the Qinghai–Tibet Plateau. A total of 50 E. nutans accessions from the eastern Qinghai–Tibet Plateau were analyzed using simple sequence repeats (SSR) markers from wheat and Elymus species. Our results show that a total of 144 reliable bands were generated, of which 132 (91.38%) were found to be polymorphic. Nei-Li's genetic similarity coefficients ranged from 0.515 to 0.870 with an average of 0.719, which shows a high level of genetic diversity and a broad genetic base among accessions. There was a low correlation between genetic distance and geographical distance (r=0.121, P=0.088) in the region, which is consistent with the unweighted pair group method with arithmetic average cluster analysis of accessions. The mountain ridges and river valleys in the eastern Qinghai–Tibet region could serve as genetic barriers for pollinator movement and seed dispersal. The rule of the most genetic diversity at medium altitude of E. nutans in the Qinghai–Tibet Plateau was also validated in the study. The implications of these results for the conservation of E. nutans are discussed.


Genome ◽  
2002 ◽  
Vol 45 (6) ◽  
pp. 1175-1180 ◽  
Author(s):  
F J Massawe ◽  
M Dickinson ◽  
J A Roberts ◽  
S N Azam-Ali

Bambara groundnut (Vigna subterranea (L.) Verdc), an African indigenous legume, is popular in most parts of Africa. The present study was undertaken to establish genetic relationships among 16 cultivated bambara groundnut landraces using fluorescence-based amplified fragment length polymorphism (AFLP) markers. Seven selective primer combinations generated 504 amplification products, ranging from 50 to 400 bp. Several landrace-specific products were identified that could be effectively used to produce landrace-specific markers for identification purposes. On average, each primer combination generated 72 amplified products that were detectable by an ABI Prism 310 DNA sequencer. The polymorphisms obtained ranged from 68.0 to 98.0%, with an average of 84.0%. The primer pairs M-ACA + P-GCC and M-ACA + P-GGA produced more polymorphic fragments than any other primer pairs and were better at differentiating landraces. The dendrogram generated by the UPGMA (unweighted pair-group method with arithmetic averaging) grouped 16 landraces into 3 clusters, mainly according to their place of collection or geographic origin. DipC1995 and Malawi5 were the most genetically related landraces. AFLP analysis provided sufficient polymorphism to determine the amount of genetic diversity and to establish genetic relationships in bambara groundnut landraces. The results will help in the formulation of marker-assisted breeding in bambara groundnut.Key words: under-utilized, African legume, molecular markers.


HortScience ◽  
2011 ◽  
Vol 46 (2) ◽  
pp. 192-196 ◽  
Author(s):  
Gen-Fa Zhu ◽  
Dong-Mei Li

This study addresses the phylogenetic relationships among native species and hybrid cultivars of Asian Dendrobium by amplified fragment length polymorphism (AFLP). The plant materials of this study are composed of 37 accessions belonging to native species in China and 63 accessions proposed to be hybrid cultivars originating from Japan and Korea. Eight AFLP primer combinations produced a total of 1658 fragments with an average of 207 fragments per primer pair, of which 1655 bands were polymorphic. Specific AFLP markers were identified in 29 of 100 tested Dendrobium accessions. Unweighted pair group method based on arithmetic average (UPGMA) analysis was performed on Dice's similarity coefficient matrix and also average similarity of each species and cultivar. The tested 100 Asian Dendrobium accessions were grouped into seven clusters with the similarity coefficient of 0.49. A first cluster consisted of 63 hybrid cultivars, 17 species of section Dendrobium, one species of section Formosae, and one species of section Callista. A second, fourth, and seventh cluster included five, three, and two species of section Dendrobium, respectively. A third group comprised five species of section Formosae. A fifth and sixth cluster contained three and two species of section Callista, respectively. These results indicated that the genetic relationships among tested Asian Dendrobium accessions were related to their origins, morphological classification, flower color, and pedigree, to some extent.


Sign in / Sign up

Export Citation Format

Share Document