scholarly journals A Plant-based Approach to Deficit Irrigation in Trees and Vines

HortScience ◽  
2011 ◽  
Vol 46 (2) ◽  
pp. 173-177 ◽  
Author(s):  
Ken Shackel

Field experiments have been performed on grapevine as well as a number of woody tree species (almond, prune, pear, cherry) to determine the relation of plant water potential to a number of indices of plant physiological activity (leaf conductance, vegetative growth, and fruit growth and composition). Horticultural benefits of regulated deficit irrigation (RDI) have been documented in several crops (grapevine, almond, prune, cherries), but management of irrigation to achieve these benefits is difficult without a reliable plant-based measure of stress. Midday stem water potential (SWP) has proven to be a robust, reliable, and practical measure of stress and closely related to physiological responses at the leaf and whole plant level [stomatal conductance (gS), vegetative growth, and fruit growth and composition such as soluble solids and fruit color].

2010 ◽  
Vol 67 (2) ◽  
pp. 164-169 ◽  
Author(s):  
Thomas Sotiropoulos ◽  
Dimitrios Kalfountzos ◽  
Ioannis Aleksiou ◽  
Spyros Kotsopoulos ◽  
Nikolaos Koutinas

Regulated deficit irrigation (RDI) involves inducing water stress during specific fruit growth phases by irrigating at less than full evapotranspiration. The objectives of this research were to study the effects of RDI perfomed at stage II of fruit growth and postharvest, on productivity of clingstone peaches, fruit quality as well as photosynthetic rate and midday leaf water potential. The research was conducted in a commercial clingstone peach (Prunus persica L. Batch cv. A-37) orchard in Greece. Trees were irrigated by means of microsprinklers and their frequency was determined using local meteorological station data and the FAO 56 Pennman-Monteith method. Photosynthetic rate was measured by a portable infrared gas analyzer. Midday leaf water potential was measured by the pressure chamber technique. During the years 2005 and 2006, the treatment RDII with irrigation applied at growth stage II of the peach tree did not affect productivity, fresh and dry mass of fruits. RDII reduced preharvest fruit drop in comparison to the control. RDII as well as the combined treatment RDII plus RDIP with irrigation applied at postharvest, at both years reduced shoot length of the vigorous shoots inside the canopy. RDII in comparison to the control increased the soluble solids content of the fruits and the ratio soluble solids/acidity. However it did not affect fruit acidity and fruit firmness. RDII as well as RDII plus RDIP in 2006 increased 'double' fruits and fruits with open cavity in comparison to the control and RDIP. Water savings were considerable and associated with the climatic conditions of each year.


2016 ◽  
Vol 14 (4) ◽  
pp. e1205 ◽  
Author(s):  
Francisco Pérez-Sarmiento ◽  
José M. Mirás-Avalos ◽  
Rosalía Alcobendas ◽  
Juan J. Alarcón ◽  
Oussama Mounzer ◽  
...  

Scarce water resources mainly in arid and semi-arid areas have caused an increasing interest for applying irrigation protocols aiming to reduce water spends. The effects of regulated deficit irrigation (RDI) on the performance of apricot trees (Prunus armeniaca L. cv. “Búlida”) were assessed in Murcia (SE Spain), during three consecutive growing seasons (2008-2010). The hypothesis was that RDI would not restrict yield but increase fruit quality while saving water. Two irrigation treatments were established: i) control, irrigated to fully satisfy crop water requirements (100% ETc) and ii) RDI, that reduced the amount of applied water to: a) 40% of ETc at flowering and stage I of fruit growth; b) 60% of ETc during the stage II of fruit growth and c) 50% and 25% of ETc during the late postharvest period (from 60 days after harvest). Stem water potential, gas exchanges, trunk cross-sectional area (TCSA), fruit diameter, yield and fruit quality traits were determined. Vegetative growth was decreased by the use of RDI (12% less TCSA on average for the three years), whereas yield was unaffected. In addition, some qualitative characteristics of the fruits, such as the level of soluble solids, sweetness/acidity relation and fruit colour, were improved by the use of RDI. These results and average water savings of approximately 30%, lead us to conclude that RDI strategies are a possible solution for irrigation management in areas with water shortages, such as arid and semi-arid environments.


HortScience ◽  
1995 ◽  
Vol 30 (6) ◽  
pp. 1229-1232 ◽  
Author(s):  
Robert C. Ebel ◽  
Edward L. Proebsting ◽  
Robert G. Evans

A standard fruit growth curve, used commercially as an aid to hand thinning, was compared to periodic volume measurements of apple fruit (Malus domestica Borkh. `Delicious') subjected to early season regulated deficit irrigation (RDI) to determine when to end RDI, which is used to control vegetative growth and save water. RDI suppressed stem water potential, stomatal conductance, and fruit growth rate compared to the trickle- and furrow-irrigated controls, which wetted about one-half and the entire soil volume, respectively. Full irrigation was restored to RDI trees by trickle and microsprinklers, which wetted about one-half and the entire soil volume, respectively, after terminal buds set. Stem water potential, stomatal conductance, and fruit growth rate of RDI trees increased to that of the controls, except for RDI/trickle trees, which had 80% the stomatal conductance of the other treatments. Fruit weight at harvest was affected by an interaction of irrigation treatment and cropload. RDI trees had similar or less vegetative growth and similar or higher yield efficiency than the controls. We recommend ending RDI before fruit growth declines below the standard curve.


2017 ◽  
Vol 35 (3) ◽  
pp. 350-356 ◽  
Author(s):  
Adriana Carolina Moreno-Hernández ◽  
Javier Enrique Vélez-Sánchez ◽  
Diego Sebastiano Intrigliolo

Crop demands for irrigation require different technologies to optimize the use of water. Regulated Deficit Irrigation (RDI) is a strategy that enables a significant reduction of water application without affecting the crop yield and quality, with the advantage of being a tool for control of vegetative growth. The present study was conducted in Sesquile, Cundinamarca (Colombia) between 2015 and 2016. The objective was to evaluate the quality and development of pear crop (Pyrus communis L. cv. Triumph of Vienna) on field conditions, using three treatments of 100%, and 25% of water requirement (ETc) and no irrigation, applied at the rapid fruit growth stage. The mid day stem water potential, plant water relations, pressure-volume curve, fruit yield and quality were evaluated. There were no significant differences in the yield and quality of the fruits among the different irrigation treatments. The trees had the mechanisms of osmotic adjustment, which allowed water stressed trees to cope with irrigation restrictions during the rapid fruit growth stage without affecting the yield.


2007 ◽  
Vol 58 (11) ◽  
pp. 1068 ◽  
Author(s):  
Mark G. O'Connell ◽  
Ian Goodwin

Partial rootzone drying (PRD) is a new irrigation strategy whereby water is withheld from part of the rootzone while another part is well watered. A successful PRD strategy should reduce tree water use through stomatal control of transpiration and reduce vegetative growth while maintaining fruit size and yield. A field experiment examined crop water relations and production performance of PRD in a commercial apple orchard on loam soil in the Goulburn Valley, Australia. The orchard consisted of high-density (1420 trees/ha) 8-year-old ‘Pink Lady’ apple trees trained as central leader and irrigated by microjets. The effects of PRD on leaf/stem water potential, vegetative growth, yield components and fruit quality were investigated during two seasons (2001–02, Year 1 and 2002–03, Year 2). The 2-year average growing season reference crop evapotranspiration and rainfall was 954 and 168 mm, respectively. Three irrigation treatments were established: (1) deficit irrigation (DI, supplied 50% of water to a fixed side of tree); (2) PRD supplied 50% of water to alternating sides of tree; (3) and conventional irrigation (CI, supplied 100% water to both sides of tree). Irrigation inputs under the CI treatment were 334 and 529 mm for Year 1 and Year 2, respectively. In Year 1, the volume of irrigation applied to CI treatment inputs equated to the replacement of predicted crop evapotranspiration (ETc) based on a mid-season FAO-56 crop coefficient with adjustment for tree size. Vegetative growth, fruit production and water status showed both PRD and DI treatments led to a classical ‘deficit irrigation’ water stress response. Leaf water potential, leaf conductance, fruit size, shoot growth and yield were reduced on PRD and DI trees compared to the fully watered (CI) trees. In Year 2, CI inputs exceeded estimated ETc by 2-fold. Consequently, minimal or no differences between irrigation regimes were measured in stem water potential, vegetative growth, yield components and fruit quality. Fruit disorders (sunburn, russet, misshape, markings, frost damage) were not affected by irrigation regime in either season. We contend that further effort is required to determine under what circumstances or environments there is a PRD response that saves water and maintains yield and quality for apple.


2011 ◽  
Vol 31 (6) ◽  
pp. 1052-1063 ◽  
Author(s):  
Carlos E Cotrim ◽  
Maurício A Coelho Filho ◽  
Eugênio F Coelho ◽  
Márcio M Ramos ◽  
Paulo R Cecon

This study aimed to test controlled levels of water deficiency in soil in mango trees, under microsprinkling irrigation, in semi-arid conditions, and to evaluate its effect in the productivity and fruits quality. The deficits were applied in the phases I, II and III of growth of the fruit, during the productive cycles of the mango tree in 2006 and 2007. The experiment in both cases was arranged in an entirely random design with 10 treatments and 3 repetitions, in the year I, and with 8 treatments and 3 repetitions in the year II. The values of soil water potential, of the treatments submitted to regulated deficit irrigation (RDI), were placed in the range of 0 to -0.011 MPa, showing that the soil humidity varied between the saturation and the field capacity, not characterizing deficit water condition. The average values of stem water potential (Ψstem) varied between -0.90 and -1.74 MPa, evidencing significant effect (p <0.05) just for T1 (without irrigation), T7 and T8 (RDI with 30% of the ETc in the phases II and III, respectively). Through the variance analysis, significant differences were not verified among productivity, number of fruits per plant and size of the fruit, in none of the experiments, what indicates the possibility of reduction of the water use in the irrigation of the mango tree without significant losses of productivity and fruit quality.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 797D-797
Author(s):  
Tessa M. Mills ◽  
M. Hossein Behboudian ◽  
Brent E. Clothier

Information on fruit water relations is scant for apple trees, especially under deficit irrigation. Here we discuss plant and fruit responses to deficit irrigation. Three-year-old potted `Braeburn' trees were studied in a glasshouse. The treatments were: well-watered control (C), early deficit (D1), and late deficit (D2). The latter two were, respectively, water stressed during 61–183 and 109–183 days after full bloom (DAFB). The final harvest was at 183 DAFB. Photosynthesis, stomatal conductance, and trunk circumference were lower in D1 and D2 than in C. Leaf area and shoot growth was reduced only in D1. Root length remained the same for all treatments. Fruit were smaller in D1 than in C; however, fruit growth was less sensitive to deficit irrigation than was vegetative growth. Fruit growth in D2 was the same as in C. Fruit concentrations of K+, fructose, sorbitol, total sugars, and titratable acidity were higher in D1 than in D2 and C. Total soluble solids were higher in D1 and D2 than in C. Although fruit water potential was lower in D1 than in C, a concomitant lowering of osmotic potential in D1 fruit led to maintenance of turgor potential, indicating osmotic adjustment. This could have been effected, at least partially, through accumulation of K+ and soluble sugars. Water relations of D2 fruit were not affected by deficit irrigation, although leaf water potential was lower than in C. Fruit water relations and fruit growth are therefore less sensitive to deficit irrigation than are those of vegetative parts.


2020 ◽  
Vol 242 ◽  
pp. 106418
Author(s):  
M. Corell ◽  
M.J. Martín-Palomo ◽  
I. Girón ◽  
L. Andreu ◽  
A. Galindo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document