scholarly journals Tolerance of Strawberry Cultivars to Oxyfluorfen and Flumioxazin Herbicides

HortScience ◽  
2012 ◽  
Vol 47 (7) ◽  
pp. 848-851 ◽  
Author(s):  
Jayesh B. Samtani ◽  
J. Ben Weber ◽  
Steven A. Fennimore

Herbicides can be an excellent supplemental treatment in cases where soil fumigant treatments alone fail to control weeds during the growing season or in situations where fumigants cannot be used as a result of regulatory restrictions. Previous studies have shown that oxyfluorfen and flumioxazin can provide satisfactory weed control in bedded strawberry (Fragaria ×ananassa Duch.) production. However, we need to know if tolerance to herbicides is uniform across strawberry cultivars under California conditions. The objective of this study was to determine if tolerance to oxyfluorfen and flumioxazin herbicides varied among strawberry cultivars. Trials were conducted in the 2007–2008 and 2009–2010 growing seasons at Salinas, CA. Treatments included an untreated control; pre-plant applications of flumioxazin at 0.07, 0.11, and 0.21 kg·ha−1 a.i.; and oxyfluorfen at 0.14 and 0.28 kg·ha−1 a.i. The entire trial was fumigated with an emulsified formulation of 60% 1,3-dichloropropene + 32% chloropicrin applied at 281 L·ha−1 by drip injection to all plots. Eight strawberry cultivars were included in the trial in the 2007–2008 growing season, and nine cultivars were included in the 2009–2010 growing season. In both growing seasons, slight to no crop phytotoxicity was observed. In the 2007–2008 growing season, several strawberry cultivars including ‘Albion’, ‘Festival’, ‘211G51’, ‘Palomar’, ‘Plant Sciences 5298’, and ‘Ventana’ had smaller crop plant canopy diameter as compared with the control when treated with 0.21 kg·ha−1 a.i. of flumioxazin. Compared with the control, flumioxazin at 0.21 kg·ha−1 a.i. reduced crop diameter for ‘Plant Sciences 4634’, ‘Plant Sciences 5298’, ‘San Andreas’, and ‘Ventana’ in the 2009–2010 growing season. In the 2007–2008 strawberry-growing season, none of the herbicide treatments reduced fruit yield compared with the control. In the 2009–2010 growing season, in seven of the nine cultivars, there were no significant differences in yield among treatments. For ‘Palomar’ strawberry, yields in plots treated with flumioxazin at 0.11 and 0.21 kg·ha−1 a.i. were significantly lower than the untreated control. With the exception of flumioxazin at 0.21 kg·ha−1 a.i., these herbicides are safe to use and can be incorporated in strawberry production practices for the cultivars tested to achieve satisfactory weed control over the growing season.

Weed Science ◽  
1989 ◽  
Vol 37 (3) ◽  
pp. 392-399 ◽  
Author(s):  
Douglas D. Buhler ◽  
Virginia L. Werling

In 1985, when weed densities were low (169 plants/m2in untreated control), imazaquin applied at 0.07 kg ai/ha early preplant controlled over 90% of all weeds before no-till planting of soybeans. In 1986 and 1987 when weed densities were higher (589 plants/m2in untreated control), addition of 1.1 kg ai/ha or more of metolachlor to imazaquin (0.07 kg/ha) before soybean planting controlled 95% or more of the grass weeds and 83% or more of the broadleaf weeds. Imazaquin plus metolachlor applied less than 1 day after soybean planting controlled less than 70% of the emerged weeds in 1986 and 1987; common lambsquarters was most tolerant. Early preplant treatments controlled more weeds throughout the growing season than treatments applied after planting. Splitting herbicide treatments among application times generally did not increase weed control compared to single applications. Early preplant applications resulted in higher soybean densities and taller soybeans 30 days after planting in 1986 and 1987 than treatments applied after planting. Soybean yields increased as weed control increased. Weed control and soybean yields were greater with early preplant treatments than paraquat plus alachlor plus metribuzin applied preemergence in 1986 and 1987. No carryover of imazaquin residue was detected through corn bioassay in the field.


2003 ◽  
Vol 79 (1) ◽  
pp. 127-131
Author(s):  
R F Sutton ◽  
T P Weldon

An experiment to investigate techniques for establishing white spruce (Picea glauca [Moench] Voss) in boreal Ontario mixedwood was begun in 1985 in Oates Twp. Eight 25-tree plots were established in each of nine treatments: three mechanical site preparation treatments (none, disk- trenching, and toothed-blading) in combination with three kinds of chemical weed control (none, Velpar L® at the time of planting, and Vision® during the second growing season). The experiment was repeated the following year in the adjacent township of Oswald. The mechanical treatments were applied as planned, but the herbicide treatments deviated somewhat from the plan. Fifth-year results were reported in this journal in 1995. In the eighth growing season, a ground-spray release treatment with Vision® was applied to four randomly selected 25-tree plots in each original treatment. Performance of white spruce after 13 growing seasons was significantly influenced by site preparation: survival averaged 65 and 79% without release in the blading and trenching treatments, respectively, and 22% in the untreated control; with release, survival averaged 74 and 80% in the blading and trenching treatments, respectively, and 24% in the untreated control. Growth was greatest in the bladed treatment, poorest by far in the untreated control. The ineffectiveness of herbicides in these experiments is surprising in view of successes elsewhere. The modest response to release was significant for 13th -year increment. Key words: site preparation, toothed blading, trenching, release


2021 ◽  
pp. 1-14
Author(s):  
Jodie A. Crose ◽  
Misha R. Manuchehri ◽  
Todd A. Baughman

Abstract Three herbicide premixes have recently been introduced for weed control in wheat. These include: halauxifen + florasulam, thifensulfuron + fluroxypyr, and bromoxynil + bicyclopyrone. The objective of this study was to evaluate these herbicides along with older products for their control of smallseed falseflax in winter wheat in Oklahoma. Studies took place during the 2017, 2018, and 2020 winter wheat growing seasons. Weed control was visually estimated every two weeks throughout the growing season and wheat yield was collected in all three years. Smallseed falseflax size was approximately six cm in diameter at time of application in all years. Control ranged from 96 to 99% following all treatments with the exception of bicyclopyrone + bromoxynil and dicamba alone, which controlled falseflax 90%. All treatments containing an acetolactate synthase (ALS)-inhibiting herbicide achieved adequate control; therefore, resistance is not suspected in this population. Halauxifen + florasulam and thifensulfuron + fluroxypyr effectively controlled smallseed falseflax similarly to other standards recommended for broadleaf weed control in wheat in Oklahoma. Rotational use of these products allows producers flexibility in controlling smallseed falseflax and reduces the potential for development of herbicide resistance in this species.


1993 ◽  
Vol 23 (10) ◽  
pp. 2286-2299 ◽  
Author(s):  
R.A. Lautenschlager

Reviewed studies of the effects of forest herbicide applications on wildlife often lacked replication, pretreatment information, and (or) were conducted for only one or two growing seasons after treatment. Because of these problems, as well as the use of dissimilar sampling techniques, study conclusions have sometimes been contradictory. A review of eight studies of the effects of herbicide treatments on northern songbird populations in regenerating clearcuts indicates that total songbird populations are seldom reduced during the growing season after treatment. Densities of species that use early successional brushy, deciduous cover are sometimes reduced, while densities of species which commonly use more open areas, sometimes increase. A review of 14 studies of the effects of herbicide treatments on small mammals indicates that like songbirds, small mammal responses are species specific. Some species are unaffected, while some select and others avoid herbicide-treated areas. Only studies that use kill or removal trapping to study small mammal responses show density reductions associated with herbicide treatment. It seems that some small mammal species may be reluctant to venture into disturbed areas, although residents in those areas are apparently not affected by the disturbance. Fourteen relevant studies examined the effects of conifer release treatments on moose and deer foods and habitat use. Conifer release treatments reduce the availability of moose browse for as long as four growing seasons after treatment. The degree of reduction during the growing season after treatment varies with the herbicide and rate used. Deer use of treated areas remains unchanged or increases during the first growing season after treatment. Eight years after treating a naturally regenerated spruce–fir stand browse was three to seven times more abundant on treated than on control plots (depending on the chemical and rate used). Forage quality (nitrogen, ash, and moisture) of crop trees increased one growing season after the soil-active herbicide simazine was applied to control competition around outplanted 3-year-old balsam fir seedlings.


1999 ◽  
Vol 13 (3) ◽  
pp. 484-488 ◽  
Author(s):  
John W. Wilcut ◽  
John S. Richburg ◽  
F. Robert Walls

Field studies were conducted in 1992 and 1993 to evaluate AC 263,222 applied postemergence (POST) alone and as a mixture with atrazine or bentazon for weed control in imidazolinone-resistant corn. Nicosulfuron alone and nicosulfuron plus atrazine were also evaluated. Herbicide treatments were applied following surface-banded applications of two insecticides, carbofuran or terbufos at planting. Crop sensitivity to POST herbicides, corn yield, and weed control was not affected by insecticide treatments. AC 263,222 at 36 and 72 g ai/ha controlled rhizomatous johnsongrass 88 and 99%, respectively, which was equivalent to nicosulfuron applied alone or with atrazine. AC 263,222 at 72 g/ha controlled large crabgrass 99% and redroot pigweed 100%, and this level of control exceeded that obtained with nicosulfuron alone. AC 263,222 at 72 g/ha controlled sicklepod and morningglory species 99 and 98%, respectively. Nicosulfuron alone or with atrazine controlled these two species less than AC 263,222 at 72 g/ha. Addition of bentazon or atrazine to AC 263,222 did not improve control of any species compared with the higher rate of AC 263,222 at 72 g/ha applied alone. Corn yield increased over the untreated control when POST herbicide(s) were applied, but there were no differences in yield among herbicide treatments.


1988 ◽  
Vol 2 (4) ◽  
pp. 490-494 ◽  
Author(s):  
James D. Haywood

Herbaceous weed control was studied on a loblolly pine planting site in central Louisiana. Pine growth was enhanced without eradicating weeds; reducing weed biomass about 50% increased the mean inside bark volume of loblolly pine saplings 53% on the weeded treatments compared to the untreated control after five growing seasons in the field. Pines receiving both preplant weed control with glyphosate or disking and postplant weed control with a series of yearly treatments (1982, atrazine plus simazine; 1983, atrazine plus oxyfluorfen; 1984, hexazinone; and 1985, hexazinone) had 62% greater volume than pines on the preplant-only treatments. So, the best gains in loblolly pine volume required postplant weed control.


2017 ◽  
Vol 31 (3) ◽  
pp. 455-463 ◽  
Author(s):  
Jayesh B. Samtani ◽  
Jeffrey Derr ◽  
Mikel A. Conway ◽  
Roy D. Flanagan

Field studies were initiated in the 2013-14 and 2014-15 growing seasons to evaluate the potential of soil solarization (SS) treatments for their efficacy on weed control and crop yields and to compare SS to 1,3-dichloropropene (1,3-D)+chloropicrin (Pic) fumigation. Each replicate was a bed with dimension 10.6 m long by 0.8 m wide on top. The center 4.6 m length of each bed, referred to as plots, was used for strawberry plug transplanting and data collection. Treatments included: i) 1,3-D+Pic (39% 1,3-dichloropropene+59.6% chloropicrin) that was shank-fumigated in beds at 157 kg ha−1and covered with VIF on August 30 in both seasons; ii) SS for a 6 wk duration initiated on August 15, 2013 and August 21, 2014 by covering the bed with 1 mil clear polyethylene tarp; iii) SS for a 4wk duration initiated on September 6, 2013 and September 3, 2014; iv) SS 4 wk treatment initiated September 6, 2013 and September 3, 2014 and replaced with black VIF on October 4, 2013 and October 1, 2014 and v) a nontreated control covered with black VIF on October 4, 2013 and October 1, 2014. In both seasons, following completion of the preplant treatments, ‘Chandler’ strawberry was planted in two rows at a 36 cm in-row spacing in plots during the first wk of October. Over both seasons, the 6 wk SS treatment consistently lowered the weed density compared to the nontreated control. Weed density in the 6wk SS treatment was not statistically different from the 4wk SS treatments in the 2013-14 growing season. In both seasons, crop yield in the 4 wk SS was significantly lower than other treatments.


2018 ◽  
Vol 32 (3) ◽  
pp. 251-259 ◽  
Author(s):  
David Miville ◽  
Gilles D. Leroux

AbstractWeed control is a challenging aspect of pumpkin production. Winter rye mulches may offer growers a means to manage weeds in pumpkin; however, rye degradation leads to an immobilization of soil nitrogen. Combining winter rye with a nitrogen fixing legume such as hairy vetch is an interesting option that may solve this problem. Twelve combinations including three hairy vetch seeding rates, two termination dates and the use or not of glyphosate before rolling cover crops were studied during the 2013 and 2014 growing seasons at the Laval University Agronomic Station in Saint-Augustin-de-Desmaures, Quebec, Canada to evaluate weed control and effects on pumpkin production. Adding hairy vetch to winter rye provided no benefits because of severe winterkill of the legume. Using glyphosate was necessary to prevent rye regrowth. Pumpkin growth was better and yields were higher than in the plots were no glyphosate was used. Mulches established at flowering (Zadoks 69) provided about 2,000 kg ha−1 more aboveground dry biomass than at early heading (Zadoks 51). This high biomass was essential in glyphosate treated plots in order to maintain excellent weed control throughout the growing season. When compared with the no-mulch weed-free control, yield in Zadoks 69+glyphosate treatment was lower in 2013 but comparable in 2014.


1994 ◽  
Vol 18 (3) ◽  
pp. 105-109 ◽  
Author(s):  
James D. Haywood

Abstract Herbaceous weed control influenced the growth of planted loblolly pine (Pinus taeda L.) over a 10-yr-period. Five treatments were examined: (1) Untreated control: seedlings were planted in the established herbaceous vegetation; (2) Glyphosate: glyphosate was broadcast in September 1981 before planting; (3) Disked: plots were cross-disked in September 1981 before planting; (4) Glyphosate-PPWC: glyphosate was broadcast before planting as in Treatment 2, and postplant weed control (PPWC) herbicides were broadcast yearly for 4 yr (1982, atrazine plus simazine ; 1983, atrazine plus oxyfluorfen; 1984 and 1985, hexazinone ); and (5) Disked-PPWC: plots were disked before planting as in Treatment 3, and the PPWC herbicides were broadcast as in Treatment 4. Four years of PPWC did not affect survival and resulted in greater height, dbh, and volume per loblolly pine through 10 growing seasons. The disked-PPWC plots were the most productive through 8 growing seasons, but higher than average mortality after 8 yr on the disked-PPWC treatment resulted in the glyphosate-PPWC plots producing more volume per acre after 10 growing seasons. Total volume production was 253 inside bark ft³/ac greater on the two PPWC treatments than on the untreated controls. South. J. Appl. For. 18(3): 105-109.


2013 ◽  
Vol 23 (3) ◽  
pp. 294-300 ◽  
Author(s):  
Linglong Wei ◽  
Jarrod J. Morrice ◽  
Rodney V. Tocco ◽  
Bernard H. Zandstra

Experiments were conducted to test a new herbicide for posttransplant application in Christmas trees. A premix containing 68.6% hexazinone and 6.5% sulfometuron-methyl was applied at 3.0, 4.5, 6.0, 7.5, and 9.0 oz/acre plus 0.25% v/v nonionic surfactant (NIS) to recently transplanted fraser fir (Abies fraseri) Christmas trees and trees transplanted for 1 year in Spring 2008. The treatments were repeated on the same plots in 2009 and 2010. At Gobles, MI, trees treated with 7.5 oz/acre of hexazinone plus sulfometuron had increased stem diameter, after one growing season, and trees treated with 9.0 oz/acre had reduced leader length the second year. After 3 years, fraser fir trees treated with hexazinone plus sulfometuron at 9.0 oz/acre had reduced tree height. Stem diameter, leader length, and number of leader buds were not statistically different from the untreated control. At Horton, MI, trees treated with 9.0 oz/acre of hexazinone plus sulfometuron had reduced leader length after 1, 2, and 3 years. After 3 years, trees treated with hexazinone plus sulfometuron at 6.0, 7.5, and 9.0 oz/acre were shorter than the untreated controls. There were no differences from the untreated trees in stem diameter of trees treated with hexazinone plus sulfometuron after 3 years.


Sign in / Sign up

Export Citation Format

Share Document