Evaluating Soil Solarization for Weed Control and Strawberry (Fragariaxananassa) Yield in Annual Plasticulture Production

2017 ◽  
Vol 31 (3) ◽  
pp. 455-463 ◽  
Author(s):  
Jayesh B. Samtani ◽  
Jeffrey Derr ◽  
Mikel A. Conway ◽  
Roy D. Flanagan

Field studies were initiated in the 2013-14 and 2014-15 growing seasons to evaluate the potential of soil solarization (SS) treatments for their efficacy on weed control and crop yields and to compare SS to 1,3-dichloropropene (1,3-D)+chloropicrin (Pic) fumigation. Each replicate was a bed with dimension 10.6 m long by 0.8 m wide on top. The center 4.6 m length of each bed, referred to as plots, was used for strawberry plug transplanting and data collection. Treatments included: i) 1,3-D+Pic (39% 1,3-dichloropropene+59.6% chloropicrin) that was shank-fumigated in beds at 157 kg ha−1and covered with VIF on August 30 in both seasons; ii) SS for a 6 wk duration initiated on August 15, 2013 and August 21, 2014 by covering the bed with 1 mil clear polyethylene tarp; iii) SS for a 4wk duration initiated on September 6, 2013 and September 3, 2014; iv) SS 4 wk treatment initiated September 6, 2013 and September 3, 2014 and replaced with black VIF on October 4, 2013 and October 1, 2014 and v) a nontreated control covered with black VIF on October 4, 2013 and October 1, 2014. In both seasons, following completion of the preplant treatments, ‘Chandler’ strawberry was planted in two rows at a 36 cm in-row spacing in plots during the first wk of October. Over both seasons, the 6 wk SS treatment consistently lowered the weed density compared to the nontreated control. Weed density in the 6wk SS treatment was not statistically different from the 4wk SS treatments in the 2013-14 growing season. In both seasons, crop yield in the 4 wk SS was significantly lower than other treatments.

1991 ◽  
Vol 5 (3) ◽  
pp. 575-581 ◽  
Author(s):  
B. E. Abu-Irmaileh

The effectiveness of soil solarization with black (BPE) and clear polyethylene mulches (CPE), 0.04 and 0.06 mm thick, respectively, was tested during the 1986 to 1990 growing seasons for controlling Egyptian broomrape, hemp broomrape and nodding broomrape in heavily infested fields. Solarization for 6 wk reduced or eliminated broomrape infestation and improved crop yields. The CPE started to show splitting and deterioration after 4 to 5 wk of solarization. The BPE lasted in usable conditions throughout the growing season. Deep soil tillage with the hand hoe, after solarization, caused broomrape to reappear. Crops grew best in plots after solarization with BPE if they were planted through the same mulch after it was perforated. Soil solarization with BPE or CPE in large tomato field trials, completely eliminated both nodding and hemp broomrapes during the growing season. However, greenhouse pot experiments indicated that solarization significantly reduced weed seedling numbers, but did not significantly reduce the dry weights of the broomrape plants that emerged in the soil samples taken from solarized plots.


Author(s):  
Suryakanta Kashyap ◽  
V.P. Singh ◽  
S.K. Guru ◽  
Tej Pratap ◽  
S.P. Singh ◽  
...  

Background: Weeds are the major threat to direct seeded rice and a single strategy of weed control may not be effective for season-long weed control. Intending to accomplish the long-term and sustainable weed management of direct seeded rice, the integration approach of weed management strategies seems a better alternative. The current field study was aimed to evaluate the impact of integration of different weed control methods on direct seeded rice under irrigated ecosystem on weed growth and rice yield. Methods: The experiment was laid out in randomized block design with three replications and twelve treatments during 2017 at G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India. The twelve treatments included the combination of cultural, mechanical, physical and chemical weed management methods. Result: Combination of stale seedbed technique integrated with pre-emergence application of pendimethalin with mechanical weeding at 25 DAS followed by 1 hand weeding at 45 DAS, Sesbania (line sowing) fb application of pendimethalin (PE) fb 1 mechanical weeding at 25 DAS fb 1 hand weeding at 45 DAS, stale seedbed with application of pendimethalin (PE) with Sesbania brown manuring supplemented with mechanical weeding (25 DAS) fb hand weeding at 45 DAS, mulching with wheat straw mulch along with post-emergence application of penoxsulam (20 DAS) fb 1 hand weeding at 45 DAS and application of pendimethalin (PE) fb penoxsulum (PoE) at 20 DAS fb 1 hand weeding at 45 DAS with a row spacing of 25 cm found to be similar in the suppression of weed population and weed density at 40 and 60 DAS and crop yields (4.3, 4.1, 4.2, 4.0 and 4.2 t/ha, respectively) were on par with weed free plot i.e. 4.4t/ha. Application of pendimethalin (PE) fb penoxsulum (PoE) at 20 DAS fb 1 hand weeding at 45 DAS with row spacing of 25cm recorded 93.7%, 90.6% and 4.5% weed control efficiency, weed control index and weed index respectively, which was similar with above integrated weed management treatments. A negative correlation of the weed density and dry matter with the yield of rice was recorded.


2020 ◽  
Vol 8 (4) ◽  
pp. 19
Author(s):  
Alan Serafini Betto ◽  
Rafael Dysarz ◽  
Rafaela Cinelli ◽  
Rubens Antonio Polito ◽  
Tamara Heck ◽  
...  

The use of ACCase-inhibiting herbicides without the correct addition of an adjuvant is a major cause of inefficient poaceous weed control. As such, this study aimed to assess the efficiency of a new clethodim/adjuvant formulated mixture in postemergence weed control for soybean crops. Two field experiments were conducted in the 2015/16 and 2016/17 growing seasons. A randomized block design, consisting of ten treatments with four repetitions, was used. The treatments and doses were: clethodim (108 g a.i. ha-1) + Lanzar® (0.5%), clethodim (108 g a.i. ha-1) + Nimbus® (0.5%), clethodim/adjuvant formulation at doses of (84 g a.i. ha-1), (96 g a.i. ha-1), (108 g a.i. ha-1), (120 g a.i. ha-1), (132 g a.i. ha-1), and (144 g a.i. ha-1), and a control with and without weeding. The formulated clethodim/adjuvant mixture showed high control at 7 days after application (DAA) in the 2015/16 growing season. At 28 DAA, formulation doses of 108 g a.i. ha-1 and higher exhibited superior weed control and the highest crop yields. Therefore, the use of correct adjuvant or formulated mixture is essential to increase the efficiency of clethodim herbicide.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Dan D. Fromme ◽  
Peter A. Dotray ◽  
W. James Grichar ◽  
Carlos J. Fernandez

Field studies were conducted during the 2008 and 2009 growing seasons at five locations in the Texas grain sorghum producing regions to evaluate pyrasulfotole plus bromoxynil combinations for weed control and grain sorghum response. All pyrasulfotole plus bromoxynil combinations controlledAmaranthus palmeri,Cucumis melo, andProboscidea louisianicaat least 94% while control ofUrochloa texanawas never better than 69%. Pyrasulfotole plus bromoxynil combinations did result in early season chlorosis and stunting; however, by the end of the growing season no visual injury or stunting differences were noted when compared to the untreated check. Early season grain sorghum chlorosis and stunting with pyrasulfotole plus bromoxynil combinations did not affect grain sorghum yields with the exception of pyrasulfotole at 0.03 kg ai/ha plus bromoxynil at 0.26 kg ai/ha plus atrazine at 0.58 kg ai/ha applied early postemergence followed by pyrasulfotole plus bromoxynil applied mid-postemergence which reduced yield at one of two locations in 2008. Grain sorghum yield increased following all pyrasulfotole plus bromoxynil treatments compared to the untreated check in 2009.


2021 ◽  
pp. 1-14
Author(s):  
Jodie A. Crose ◽  
Misha R. Manuchehri ◽  
Todd A. Baughman

Abstract Three herbicide premixes have recently been introduced for weed control in wheat. These include: halauxifen + florasulam, thifensulfuron + fluroxypyr, and bromoxynil + bicyclopyrone. The objective of this study was to evaluate these herbicides along with older products for their control of smallseed falseflax in winter wheat in Oklahoma. Studies took place during the 2017, 2018, and 2020 winter wheat growing seasons. Weed control was visually estimated every two weeks throughout the growing season and wheat yield was collected in all three years. Smallseed falseflax size was approximately six cm in diameter at time of application in all years. Control ranged from 96 to 99% following all treatments with the exception of bicyclopyrone + bromoxynil and dicamba alone, which controlled falseflax 90%. All treatments containing an acetolactate synthase (ALS)-inhibiting herbicide achieved adequate control; therefore, resistance is not suspected in this population. Halauxifen + florasulam and thifensulfuron + fluroxypyr effectively controlled smallseed falseflax similarly to other standards recommended for broadleaf weed control in wheat in Oklahoma. Rotational use of these products allows producers flexibility in controlling smallseed falseflax and reduces the potential for development of herbicide resistance in this species.


2019 ◽  
Vol 33 (6) ◽  
pp. 800-807 ◽  
Author(s):  
Graham W. Charles ◽  
Brian M. Sindel ◽  
Annette L. Cowie ◽  
Oliver G. G. Knox

AbstractField studies were conducted over six seasons to determine the critical period for weed control (CPWC) in high-yielding cotton, using common sunflower as a mimic weed. Common sunflower was planted with or after cotton emergence at densities of 1, 2, 5, 10, 20, and 50 plants m−2. Common sunflower was added and removed at approximately 0, 150, 300, 450, 600, 750, and 900 growing degree days (GDD) after planting. Season-long interference resulted in no harvestable cotton at densities of five or more common sunflower plants m−2. High levels of intraspecific and interspecific competition occurred at the highest weed densities, with increases in weed biomass and reductions in crop yield not proportional to the changes in weed density. Using a 5% yield-loss threshold, the CPWC extended from 43 to 615 GDD, and 20 to 1,512 GDD for one and 50 common sunflower plants m−2, respectively. These results highlight the high level of weed control required in high-yielding cotton to ensure crop losses do not exceed the cost of control.


2021 ◽  
Vol 13 (12) ◽  
pp. 2249
Author(s):  
Sadia Alam Shammi ◽  
Qingmin Meng

Climate change and its impact on agriculture are challenging issues regarding food production and food security. Many researchers have been trying to show the direct and indirect impacts of climate change on agriculture using different methods. In this study, we used linear regression models to assess the impact of climate on crop yield spatially and temporally by managing irrigated and non-irrigated crop fields. The climate data used in this study are Tmax (maximum temperature), Tmean (mean temperature), Tmin (minimum temperature), precipitation, and soybean annual yields, at county scale for Mississippi, USA, from 1980 to 2019. We fit a series of linear models that were evaluated based on statistical measurements of adjusted R-square, Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). According to the statistical model evaluation, the 1980–1992 model Y[Tmax,Tmin,Precipitation]92i (BIC = 120.2) for irrigated zones and the 1993–2002 model Y[Tmax,Tmean,Precipitation]02ni (BIC = 1128.9) for non-irrigated zones showed the best fit for the 10-year period of climatic impacts on crop yields. These models showed about 2 to 7% significant negative impact of Tmax increase on the crop yield for irrigated and non-irrigated regions. Besides, the models for different agricultural districts also explained the changes of Tmax, Tmean, Tmin, and precipitation in the irrigated (adjusted R-square: 13–28%) and non-irrigated zones (adjusted R-square: 8–73%). About 2–10% negative impact of Tmax was estimated across different agricultural districts, whereas about −2 to +17% impacts of precipitation were observed for different districts. The modeling of 40-year periods of the whole state of Mississippi estimated a negative impact of Tmax (about 2.7 to 8.34%) but a positive impact of Tmean (+8.9%) on crop yield during the crop growing season, for both irrigated and non-irrigated regions. Overall, we assessed that crop yields were negatively affected (about 2–8%) by the increase of Tmax during the growing season, for both irrigated and non-irrigated zones. Both positive and negative impacts on crop yields were observed for the increases of Tmean, Tmin, and precipitation, respectively, for irrigated and non-irrigated zones. This study showed the pattern and extent of Tmax, Tmean, Tmin, and precipitation and their impacts on soybean yield at local and regional scales. The methods and the models proposed in this study could be helpful to quantify the climate change impacts on crop yields by considering irrigation conditions for different regions and periods.


Author(s):  
V. A. Petruk

The results of field studies for 2017 - 2019 are presented. yields of perennial grasses sown at different times of the growing season. Spring, summer, and winter sowing periods were compared. Alfalfa, clover, rump, and also their mixtures were sown in 2017 under the cover of barley. The value of the cover crop yield of spring and summer sowing periods did not differ significantly and amounted to 4-5 t / ha of absolutely dry matter. Winter barley crops have not formed. On average, over 2 years of use, the highest yields were observed in alfalfa-crust grass mixtures - 3.4 t / ha of absolutely dry matter. The lowest yield was obtained in the single-species seeding of the rump. Correspondingly, in the spring, summer and winter periods of sowing, the yield of rump was 1.6; 1.1 and 1.3 t / ha. With a late sowing period, the yield of perennial grasses is significantly lower compared to spring and summer. With winter sowing periods, the yield was the highest for grass stands of alfalfa and alfalfacrust grass mixture - 2.3 and 2.4 t / ha. It should be noted that in the second year of use, the yield by the sowing dates in single-species crops and grass mixtures is leveled. The winter crops of perennial grasses in the first year of use formed a low yield. Only in the second year (third year of life) the productivity of perennial grasses of winter sowing began to increase. Consequently, in the area under perennial grasses of the winter sowing period, during one growing season (the next year after sowing), the crop was not actually formed. Based on the data obtained, production can be recommended for spring and summer planting of perennial grasses under the cover of barley. The winter sowing period provides economically valuable crop yields only by the third year of life.


Weed Science ◽  
2015 ◽  
Vol 63 (1) ◽  
pp. 346-352 ◽  
Author(s):  
Nicholas E. Korres ◽  
Jason K. Norsworthy

Cover crops are becoming increasingly common in cotton as a result of glyphosate-resistant Palmer amaranth; hence, a field experiment was conducted in 2009 and 2010 in Marianna, AR, with a rye cover crop used to determine its effects on the critical period for weed control in cotton. Throughout most of the growing season, weed biomass in the presence of a rye cover crop was lesser than that in the absence of a rye cover crop. In 2009, in weeks 2 through 7 after planting, weed biomass was reduced at least twofold in the presence of a rye cover compared with the absence of rye. In 2009, in both presence and absence of a rye cover crop, weed removal needed to begin before weed biomass was 150 g m−2, or approximately 4 wk after planting, to prevent yield loss > 5%. Weed density was less in 2010 than in 2009, so weed removal was not required until 7 wk after planting, at which point weed biomass values were 175 and 385 g m−2in the presence and absence of a cover crop, respectively.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1920 ◽  
Author(s):  
Sharma ◽  
Kannan ◽  
Cook ◽  
Pokhrel ◽  
McKenzie

Most of the recent studies on the consequences of extreme weather events on crop yields are focused on droughts and warming climate. The knowledge of the consequences of excess precipitation on the crop yield is lacking. We attempted to fill this gap by estimating reductions in rainfed grain sorghum yields for excess precipitation. The historical grain sorghum yield and corresponding historical precipitation data are collected by county. These data are sorted based on length of the record and missing values and arranged for the period 1973–2003. Grain sorghum growing periods in the different parts of Texas is estimated based on the east-west precipitation gradient, north-south temperature gradient, and typical planting and harvesting dates in Texas. We estimated the growing season total precipitation and maximum 4-day total precipitation for each county growing rainfed grain sorghum. These two parameters were used as independent variables, and crop yields of sorghum was used as the dependent variable. We tried to find the relationships between excess precipitation and decreases in crop yields using both graphical and mathematical relationships. The result were analyzed in four different levels; 1. Storm by storm consequences on the crop yield; 2. Growing season total precipitation and crop yield; 3. Maximum 4-day precipitation and crop yield; and 4. Multiple linear regression of independent variables with and without a principal component analysis (to remove the correlations between independent variables) and the dependent variable. The graphical and mathematical results show decreases in rainfed sorghum yields in Texas for excess precipitation could be between 18% and 38%.


Sign in / Sign up

Export Citation Format

Share Document