scholarly journals Rhizosphere Acidification is Not Part of the Strategy I Iron Deficiency Response of Vaccinium arboreum and the Southern Highbush Blueberry

HortScience ◽  
2015 ◽  
Vol 50 (7) ◽  
pp. 1064-1069 ◽  
Author(s):  
Gerardo H. Nunez ◽  
James W. Olmstead ◽  
Rebecca L. Darnell

Vaccinium arboreum (VA) is a wild blueberry species that exhibits wider soil pH tolerance and greater ability for iron and nitrate uptake than cultivated Vaccinium species, including southern highbush blueberry (SHB, V. corymbosum interspecific hybrids). The ability of VA and SHB to respond to iron deficiency by rhizosphere acidification was investigated. Rooted cuttings of the VA genotype FL09-502 and SHB ‘Emerald’ were transplanted to a hydroponic system filled with complete nutrient solution. After 14 days of acclimation at 45 µm iron, plants were transferred to unbuffered nutrient solutions containing 90 or 10 µm iron. ‘Emerald’ and FL09-502 plants grown in 10 µm iron exhibited less iron uptake and lower chlorophyll, total iron, and active iron contents than plants grown in 90 µm iron. Generally, there were no species-level differences in iron or nitrate uptake. Neither FL09-502 nor ‘Emerald’ acidified the rhizosphere in either the nutrient solution or in a gel-based assay, regardless of external iron concentration. A screen of 18 additional genotypes of VA and SHB confirmed that this response is absent in these taxa. Thus, rhizosphere acidification is not part of the iron deficiency response of SHB and VA. In addition, the ability to acidify the soil is not likely to be responsible for the wider soil pH tolerance of VA.

Author(s):  
Abdelmajid Krouma

Calcareous soils are known problematic lands for agricultural systems because of the low availability of nutrients, particularly iron (Fe). The so-called strategy I plant (e. g. Pea, Pisum sativum L.) which groups dicotyledons and monocots other than grasses, developed root membrane activities that contribute to the improvement of Fe availability. Among the functions considered to be a critical phase in iron absorption is rhizosphere acidification by H-ATPase and Fe(III) reduced by Fe(III) chelate reducctase (FeCR). In order to experimentally investigate the importance of root FeCR in Fe nutrition, its relationship with rhizosphere acidification and the genotypic differences in response to iron deficiency in pea (Pisum sativum L.), a glasshouse experiment was conducted hydroponically on four genotypes Merveille de Kelvedon (MK); Lincoln (Lin); Douce de Provence (DP) and Alexandra (Alex). Plants of each genotype were distributed into two plots, the first one received full nutrient solution (+ Fe), the second one received nutrient solution devoid of iron (- Fe). Plant growth, Fe distribution, SPAD index and root acidification and ferric chelate reductase activities were evaluated. Fe deficiency decreased plant growth and SPAD index along with the significant increase of H-ATPase and FeCR activities. Some genotypic differences were observed as follows; Alex showed high tolerance to Fe deprivation as compared to other genotypes. Important H-ATPase and FeCR activities, high Fe use efficiency and adequate membrane efficiency are the main reasons for this tolerance. These physiological parameters could be used as tools of tolerance for further breeding programs


HortScience ◽  
2020 ◽  
Vol 55 (1) ◽  
pp. 40-45
Author(s):  
Rebecca L. Darnell ◽  
Jeffrey G. Williamson ◽  
Deanna C. Bayo ◽  
Philip F. Harmon

Vaccinium arboreum Marsh is a small tree adapted to low-organic matter soils and is one of the few ericaceous species that tolerates soil pH greater than 6.0. It has a deep root system and is more drought tolerant than cultivated blueberry. The use of V. arboreum as a rootstock for commercial blueberry production has been studied previously in young blueberry plantings. The objective of the current study was to expand on earlier work and evaluate growth, productivity, and tolerance to bacterial leaf scorch (Xylella fastidiosa) in established plantings of own-rooted vs. grafted southern highbush blueberry (SHB). Two field plantings of grafted and own-rooted ‘Meadowlark’ and ‘Farthing’ SHB were established in May 2011: one at the University of Florida–Institute of Food and Agricultural Sciences (UF-IFAS) Plant Science Research and Education Unit in Citra, FL, and the other at a commercial blueberry farm in Archer, FL. At both sites, four rootstock–scion combinations were grown in either pine bark-amended or nonamended soil. Canopy volume was greater in grafted compared with own-rooted ‘Meadowlark’ at both locations throughout the 4 years of the study (2015–18), whereas canopy volume in ‘Farthing’ was not consistently different. For both cultivars and both locations, canopy volume was greater on amended compared with nonamended soil. Although canopy growth was not consistently increased in the grafted compared with own-rooted plants, yield was greater in grafted plants of both cultivars at both locations. Cumulative yield over the 4 years was similar between grafted plants grown on both amended and nonamended soil, and was significantly greater than yield of own-rooted plants on nonamended soil, suggesting the use of this rootstock may decrease the requirement for pine bark amendment. In general, grafted plants produced larger berries, with no negative impacts on fruit soluble solids, titratable acidity, or firmness. ‘Meadowlark’—an SHB cultivar that exhibits high sensitivity to bacterial leaf scorch—displayed decreased development of bacterial leaf scorch symptoms when grafted onto V. arboreum compared with own-rooted plants. These results indicate the potential benefits of grafting SHB onto V. arboreum rootstock, particularly under marginal soil conditions. However, a complete economic analysis that also takes into account any differences in longevity between the two systems must be done to determine whether the benefits of using grafting are feasible financially for the grower.


HortScience ◽  
2016 ◽  
Vol 51 (12) ◽  
pp. 1503-1510 ◽  
Author(s):  
Bruno Casamali ◽  
Jeffrey G. Williamson ◽  
Alisson P. Kovaleski ◽  
Steven A. Sargent ◽  
Rebecca L. Darnell

The profitability of the fresh market blueberry industry in many areas is constrained by the extensive use and cost of soil amendments, high labor requirements for hand harvesting, and the inefficiencies of mechanical harvesters. Vaccinium arboreum Marsh is a wild species that has wide soil adaptation and monopodial growth habit. It has the potential to be used as a blueberry rootstock, expanding blueberry production to marginal soil and improving the mechanical harvesting efficiency of cultivated blueberry. The objectives of this research were to compare yield, berry quality, and postharvest fruit storage of own-rooted vs. grafted southern highbush blueberry (SHB) cultivars (Farthing and Meadowlark) grown on amended vs. nonamended soil and either hand or mechanical harvested. Yields of hand-harvested SHB during the first two fruiting years were generally greater in own-rooted plants grown on amended soil compared with own-rooted plants on nonamended soil or grafted plants on either soil treatment. However, by the second fruiting year, hand-harvest yields of grafted SHB were ≈80% greater than own-rooted plants when grown in nonamended soil. Yields of mechanical-harvested SHB grafted on V. arboreum and grown in either soil treatment were similar to yields of mechanical-harvested own-rooted plants in amended soil the second fruiting year, and greater than yields of own-rooted plants in non-amended soil. In general, mechanical harvesting reduced marketable yield ≈40% compared with hand harvesting. However, grafted plants reduced ground losses during harvest by ≈35% compared with own-rooted plants for both cultivars. Mechanical-harvested berries had a greater total soluble solids:total titratable acidity ratio (TSS:TTA) than hand-harvested berries, and berries harvested toward the end of the harvest season had a greater TSS:TTA than those from early-season harvests. As postharvest storage time increased, berry appearance ratings decreased and berry softness and shriveling increased, particularly in mechanical-harvested compared with hand-harvested berries. Firmness of mechanical-harvested berries decreased during storage, whereas firmness of hand-harvested berries remained relatively stable. However, fruit quality at harvest and during postharvest storage was unaffected by V. arboreum rootstocks or lack of pine bark amendment. This study suggests that using V. arboreum as a rootstock in an alternative blueberry production system has the potential to decrease the use of soil amendments and increase mechanical harvesting efficiency.


HortScience ◽  
2019 ◽  
Vol 54 (5) ◽  
pp. 955-959 ◽  
Author(s):  
Christopher S. Imler ◽  
Camila I. Arzola ◽  
Gerardo H. Nunez

Unlike most horticultural crops, blueberry (Vaccinium spp. section cyanococcus) prefers low-pH (4.2–5.5) soils. Other plants can acidify their rhizosphere to create a hospitable microenvironment. Southern highbush blueberry (SHB; Vaccinium corymbosum interspecific hybrids) plants do not acidify their rhizosphere in response to Fe deficiency, but other factors that affect rhizosphere pH have not been elucidated. We report results from two hydroponic experiments exploring N uptake effects on the rhizosphere pH of ‘Emerald’ SHB. Ammonium (NH4+) uptake led to rhizosphere acidification, whereas nitrate (NO3–) uptake led to rhizosphere alkalization. When grown in a split-root hydroponic system, roots that took up NH4+ acidified the rhizosphere to a greater extent that roots not exposed to NH4+. Rhizosphere acidification was observed even in a nontreated control. These results suggest that NH4+ uptake is the main driver of rhizosphere pH in SHB. N form effects suggest that fertilization with NO3– might lead to undesirable rhizosphere alkalization.


HortScience ◽  
2016 ◽  
Vol 51 (7) ◽  
pp. 880-886 ◽  
Author(s):  
Bruno Casamali ◽  
Rebecca L. Darnell ◽  
Alisson P. Kovaleski ◽  
James W. Olmstead ◽  
Jeffrey G. Williamson

Vaccinium arboreum Marsh is a wild species adapted to high pH (above 6.0) and low organic matter soils (below 2.0%). The use of V. arboreum rootstocks may be a viable option to increase soil adaptation of southern highbush blueberry (SHB) (Vaccinium corymbosum interspecific hybrid) under marginal soil conditions. The objective of this research was to evaluate the vegetative and reproductive traits of ‘Farthing’ and ‘Meadowlark’ SHB own-rooted or grafted onto V. arboreum and grown in pine bark–amended or nonamended soil. The study was conducted from 2012 through 2014 at a research center in Citra, FL, and a grower’s farm in Archer, FL. Vaccinium arboreum rootstock generally induced the same effects in both cultivars. Grafted plants in both soil treatments had reduced canopy growth in the first year after field planting compared with own-rooted plants in amended soil. However, canopy volume of grafted plants was greater than own-rooted plants in nonamended soil and similar to own-rooted plants in amended soil 2 years after field planting for ‘Meadowlark’ and 3 years after planting for ‘Farthing’. Fruit yield was lower in grafted plants compared with own-rooted plants in the first fruiting year (2 years after field planting). By the second fruiting year, yields of grafted plants were similar to or greater than yields of own-rooted plants when grown in nonamended soil, whereas in amended soil, yields of grafted plants were similar to yields of own-rooted plants. Grafted plants had greater mean berry weight, but lower berry firmness; however, the firmness values were still considered acceptable (greater than 160 g⋅mm−1). Internal fruit quality [total soluble solids (TSS) and total titratable acidity (TTA)] was not consistently affected by the rootstock or soil treatments. These results suggest that grafting SHB onto V. arboreum does not increase yield in the establishment years compared with own-rooted SHB when grown in amended soils, but may have the ability to increase yield with no negative effects on fruit quality when grown in nonamended soils.


HortScience ◽  
2022 ◽  
Vol 57 (1) ◽  
pp. 17-21
Author(s):  
Cecilia Rubert Heller ◽  
Gerardo H. Nunez

Coconut coir is widely used as a substrate component for southern highbush blueberry [(SHB) Vaccinium corymbosum L. interspecific hybrids] cultivation in containers. Coconut coir-based substrates can exhibit high potassium (K), sodium (Na), and chlorine (Cl) concentrations. Sodium in the substrate is particularly problematic because it can cause salinity stress and nutritional imbalances in young blueberry plants. Thus, Na removal is important to ensure transplant success. We hypothesized that preplant fertilization with large volumes of nutrient solution can reduce substrate salinity, replace Na with nutritional cations, and enhance blueberry establishment. We tested this hypothesis in a greenhouse experiment with ‘Snowchaser’ SHB grown in rhizoboxes filled with a 7:3 mix of coconut coir and perlite. Four different treatments were delivered every 24 hours starting 72 hours before transplant. Treatments included 1.75 g⋅L–1 calcium nitrate (CN), 2.38 g⋅L–1 monoammonium phosphate (MAP), deionized water, and well water. One rooted cutting was transplanted to each rhizobox. Rhizoboxes were fertigated during the 7-week cultivation period. We found that preplant fertilization increased nitrogen (N), phosphorus (P), and calcium (Ca) concentrations in the substrate without replacing Na. Thus, preplant fertilization increased substrate salinity. Preplant fertilization also promoted microbial respiration in the substrate at the start of the experiment. Treatments did not affect SHB root architecture, leaf area index, leaf greenness, or biomass accumulation, likely because nutrients delivered by the fertigation solution provided the plants with homogeneous optimal conditions. These findings suggest that preplant fertilization with large volumes of nutrient solution does not enhance blueberry establishment in coconut coir-based substrates.


2006 ◽  
Vol 131 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Rebecca L. Darnell ◽  
Steven A. Hiss

Most Vaccinium species have narrow soil adaptation and are limited to soils that have low pH, high available iron (Fe), and nitrogen (N) primarily in the ammonium (NH4+) form. Vaccinium arboreum Marsh. is a wild species that can tolerate a wider range of soil conditions, including higher pH and nitrate (NO3-) as the predominant N form. This wider soil adaptation may be related to the ability of V. arboreum to acquire Fe and NO3- more efficiently than cultivated Vaccinium species, such as V. corymbosum L. interspecific hybrid (southern highbush). Nitrate and Fe uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in these two species grown hydroponically in either 1.0 or 5.0 mm NO3-. Nitrate uptake rate (on a whole-plant and FW basis) and root NR activity were significantly greater in V. arboreum compared with V. corymbosum. Iron uptake on a FW basis was also greater in V. arboreum, and was correlated with higher root FCR activity than was found in V. corymbosum. Increased Fe and NO3- uptake/assimilation in V. arboreum were reflected in increased organ and whole-plant dry weights compared with V. corymbosum. Vaccinium arboreum appears to be more efficient in acquiring and assimilating NO3- and Fe than is the cultivated species, V. corymbosum. This may partially explain the wider soil adaptation of V. arboreum.


HortScience ◽  
1998 ◽  
Vol 33 (6) ◽  
pp. 1066-1068 ◽  
Author(s):  
Sylvia J. Brooks ◽  
Paul M. Lyrene

The extent of self-fertility and self-fruitfulness was studied in Vaccinium arboreum Marsh, V. darrowi Camp, and in seedlings, termed MIKs, from open-pollination of V. darrowi (section Cyanococcus) × V. arboreum (section Batodendron) F1 hybrids. The open pollinations that produced the MIKs occurred in a field containing tetraploid southern highbush selections (based largely on V. corymbosum L.), and the pollen parents of the MIKs are believed to be southern highbush selections. The MIKs that were studied had been selected for high fruit set after open pollination in the field. Both V. arboreum and V. darrowi exhibited very low self-fruitfulness and self-fertility when hand-pollinated in a greenhouse; the former produced no seedlings from more than 600 selfed flowers, and the latter produced only 13. By contrast, southern highbush clones averaged 70 seedlings per 100 pollinated flowers when selfed and 230 when crossed. Self-fertility and self-fruitfulness of the MIKs were higher than those of V. arboreum and V. darrowi but lower than those of southern highbush selections. MIK × MIK crosses gave fewer seedlings per 100 pollinated flowers (84) than highbush × highbush crosses (230), probably reflecting their hybrid ancestry. Although introduction of V. arboreum genes into southern highbush blueberry gives plants of excellent vigor and adaptation to north Florida, several generations of breeding will be needed to obtain cultivars with high fertility and berry quality.


2015 ◽  
Vol 25 (4) ◽  
pp. 460-463 ◽  
Author(s):  
Rebecca L. Darnell ◽  
Bruno Casamali ◽  
Jeffrey G. Williamson

Successful blueberry (Vaccinium sp.) cultivation typically requires soils with low pH, high organic matter, readily available iron, and nitrogen (N) in the ammonium form. Growth of blueberry on typical mineral soils (higher pH, low organic matter) is reduced. Although soil pH effects on nutrient availability and uptake are known, it is unclear if the requirement for low soil pH in blueberry production is due to effects on nutrient availability/uptake or is a more direct effect of rhizosphere pH on root function. In addition, it is unclear if the requirement for high organic matter (soil amendments) is related directly to nutrient availability/uptake. Several studies have examined the use of rootstocks to increase soil adaptation of blueberry and some of these rootstocks have been found to increase plant vigor and yield. In particular, we have investigated whether sparkleberry (Vaccinium arboreum)—a wild blueberry species that is adapted to high pH and low organic matter soils—could be used as a rootstock for commercial production of blueberry on mineral soils. Our work indicates that both nitrate (NO3−) and iron (Fe) uptake and assimilation are greater in sparkleberry compared with southern highbush blueberry [SHB (Vaccinium corymbosum interspecific hybrid)]. This is correlated with increased activity of nitrate reductase (NR) and iron chelate reductase, the rate limiting enzymes for NO3− and Fe acquisition, respectively. Field studies comparing growth and yield of own-rooted vs. grafted ‘Meadowlark’ and ‘Farthing’ SHB in amended vs. nonamended soils are ongoing. In general, own-rooted plants on amended soils exhibit greater growth than own-rooted on nonamended soils, while grafted plants in either soil system exhibit intermediate growth. Yields generally followed this pattern. Our preliminary results suggest that tolerance of SHB to mineral soils is greater when plants are grafted onto sparkleberry than when grown on their own roots. However, growth and yield of grafted plants grown under mineral soil conditions may not equal or exceed that of own-rooted plants grown under optimum soil conditions, at least in the first years after field planting. Longer term studies are necessary to fully evaluate the potential of using sparkleberry and other blueberry species as rootstocks for SHB and northern highbush blueberry (V. corymbosum).


Sign in / Sign up

Export Citation Format

Share Document