scholarly journals Paclobutrazol or Ancymidol Effects on Postharvest Performance of Potted Ornamental Plants and Plugs

HortScience ◽  
2015 ◽  
Vol 50 (9) ◽  
pp. 1370-1374 ◽  
Author(s):  
Iftikhar Ahmad ◽  
Brian E. Whipker ◽  
John M. Dole

Effects of paclobutrazol and ancymidol on postharvest performance and growth control of potted sunflower (Helianthus annuus L.), zinnia (Zinnia elegans Jacq.) and marigold (Tagetes erecta L.), petunia (Petunia ×hybrida Vilm.) plugs, respectively, were studied. Paclobutrazol was applied as a drench at 0, 1.0, 2.0, or 4.0 mg of a.i. per 15.2-cm pot for sunflower and 0, 0.5, 1.0, or 2.0 mg per 12.5-cm pot for zinnia, while ancymidol was applied at 0, 40, 80, and 160 mg·L−1 with a volume of 0.21 L·m−2 as a foliar spray for marigolds or petunia plug crops. With an increase in paclobutrazol dose or ancymidol concentration, plant growth (plant height and diameter, shoot fresh or dry weight) was controlled for all species tested. Use of 1.0–2.0 mg paclobutrazol per pot produced 21% to 28% shorter plants with 12% to 15% smaller plant diameter, 13% to 19% less shoot fresh weight, 15% to 21% less dry weight, and darker green foliage color for potted sunflower than nontreated plants. Treatment with 1.0–4.0 mg paclobutrazol per pot delayed first wilting by 0.7–1.4 days compared with nontreated plants. For zinnia, 0.5–1.0 mg paclobutrazol controlled plant growth, produced dark green foliage, and extended shelf life by delaying first wilting by 2.6–3.9 days and second wilting by 1.4–2.0 days than nontreated plants. For marigold and petunia plugs, 40–80 mg·L−1 ancymidol provided ample growth control with darker green foliage; however, postharvest longevity was extended only when plugs were sprayed with 160 mg·L−1 ancymidol. During simulated storage and shipping, plant growth retardants maintained darker green foliage for potted sunflower, zinnia, and marigold plugs and prevented postharvest stem elongation of petunia plugs. In summary, use of plant growth retardants effectively controlled excessive plant growth and extended shelf life of potted plants and plugs.

Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 532
Author(s):  
Endre Kentelky ◽  
Zsolt Szekely-Varga ◽  
János Bálint ◽  
Adalbert Balog

Ornamental plants are cultivated worldwide. Chrysanthemum is classified as one of the most important cut and potted flowers in most of the countries. The consumer’s expectation is to find small–compact, and full of inflorescences plants. To meet these demands, growers are tending to use plant growth retardants. Three Chrysanthemum indicum L. varieties (‘Smola White’, ‘Arber’ and ‘Vienna White’) were assessed by using four plant growth regulators (PP–Bumper 250 EC; CC–Stabilan SL; MP–Medax Top SC; and PD–Toprex SC). Results indicate that treated plants show significant decrease in the assessed parameters, although in some cases growth could be a variety–dependent factor. It can also be concluded that retardants inhibit chrysanthemum growth. PD treatments greatly inhibited the growth of the plant, and also had a negative effect on inflorescences. In conclusion, the present work strengthens the possibility of using retardants as plant growth inhibitors in Chrysanthemum cultivation.


2011 ◽  
Vol 21 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Christopher J. Currey ◽  
Roberto G. Lopez

Plant growth retardants (PGRs) are commonly applied to control poinsettia (Euphorbia pulcherrima) stem elongation to meet a target final height. Two weeks after pinching, 4-fl·oz substrate drenches containing 0.0, 0.05, 0.10, 0.15, 0.20, or 0.25 mg·L−1 flurprimidol were applied to high-vigor ‘Orion’ and low-vigor ‘Polly Pink’ poinsettia (Expt. I); while drenches containing 0.0, 0.05, 0.10, or 0.15 mg·L−1 flurprimidol or a foliar spray containing 1250 mg·L−1 daminozide and 750 mg·L−1 chlormequat chloride were applied to high-vigor ‘Classic Red’ and low-vigor ‘Freedom Salmon’ poinsettia (Expt. II). Final height of ‘Orion’ and ‘Polly's Pink’ poinsettia was suppressed by 12% to 25% and 13% to 30%, respectively, as flurprimidol concentration increased from 0.05 to 0.25 mg·L−1. Final height of ‘Classic Red’ and ‘Freedom Salmon’ was suppressed by 11% to 30% and 10% to 19%, respectively, as flurprimidol concentration increased from 0.05 to 0.15 mg·L−1. Although the daminozide and chlormequat chloride spray had no significant effect on bract area index compared with untreated plants, bract area index was smaller for all plants treated with flurprimidol. However, the bract area to height ratio of all cultivars was not impacted by any PGR application, indicating aesthetic appearance was not negatively affected with smaller bract area. Time to anthesis was delayed by up to 4 days when 0.10 mg·L−1 was applied to ‘Classic Red’, although no significant delays were observed for the remaining cultivars. Based on these results, flurprimidol may be applied as an early drench to suppress height of poinsettia without adversely impacting finished plant quality or crop timing.


2003 ◽  
Vol 13 (2) ◽  
pp. 293-296 ◽  
Author(s):  
Ryan M. Warner ◽  
John E. Erwin

One-time spray applications [about 6 mL (0.2 fl oz)] of chlormequat chloride [1000 or 2000 mg·L-1 (ppm)], daminozide (2500 or 5000 mg·L-1), paclobutrazol (20 or 40 mg·L-1) and uniconazole (5 or 10 mg·L-1) varied in efficacy in reducing Hibiscus coccineus (Medic.) Walt., H. radiatus Cav., and H. trionum L. (flower-of-an-hour) stem elongation. Chlormequat chloride inhibited stem elongation of all species, with a 2000 mg·L-1 application reducing stem length of H. coccineus, H. radiatus, and H. trionum by 87%, 42%, and 52%, respectively, compared to untreated plants, 28 d after application. Paclobutrazol also inhibited stem elongation of all species. Uniconazole reduced stem elongation of H. coccineus and H. radiatus, but not H. trionum. Daminozide applied at 5000 mg·L-1 reduced H. radiatus stem elongation only. Growth retardants examined in this study did not delay flowering of H. trionum, the only species that flowered during the experiment. (Chemical names used: ancymidol (α-cyclopropyl-α-(4-methoxyphenol)-5-pyrimidinemethonol), chlormequat chloride(2-chloroethyltrimethylammonium chloride), paclobutrazol ((+)-(R*,R*)-beta((4-chlorophenyl)methyl)-alpha-(1,1-dimethyl)-1H-1,2,4-triazol-1-ethanol), daminozide ([butanedioic acid mono(2,2-dimethylhydrazide)], uniconazol-P ((E)-(+)-(s)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-ene-3-ol)).


Author(s):  
R. Sivakumar ◽  
P. Parasuraman ◽  
M. Vijayakumar

Background: Foxtail millet is one of the nutri-cereal foods for the people of semi arid regions. Proper nutrient management and source-sink alteration are major keys for achieving higher productivity in millets. However, potassium is not recommended to foxtail millet and the potential yield is not exploited. And also the study of source-sink alteration in foxtail millet by using plant growth regulators is meager. Methods: An experiment was conducted to study the impact of plant growth retardants viz., chlormequat chloride (CCC) and mepiquat chloride (MC) with the nutrient potassium (K2SO4 - 1%) on growth, gas exchange parameters and grain yield of foxtail millet under rainfed condition. Plant growth retardants with potassium consortium were used as foliar spray at flower initiation stage under field condition. Standard methods were used to measure the plant height, root length, number of leaves, LAD, CGR and grain yield. The photosynthetic rate, transpiration rate and leaf temperature were measured by using the instrument PPS. Result: Foliar spray of CCC (250 ppm) with 1% K2SO4 showed supremacy to enhance crop growth rate, leaf area duration, photosynthetic rate, transpiration rate and grain yield compared to other treatments. However, lowest plant height (100.7 cm) and number of leaves were observed by CCC (250 ppm) alone. Highest photosynthetic rate (26.84) and transpiration rate (17.94) were registered by CCC + K2SO4. Lowest leaf temperature of 34.1ºC was registered by 1% K2SO4 compared to control (35.6°C). CCC with K2SO4 recorded highest LAD value of 46.1 which is on par with K2SO4 alone (45.9). CCC with K2SO4 registered highest grain yield of 2.13 t ha-1 with increased yield of 18.3% over control. However, highest benefit cost ratio of ratio of 2.75 was recorded by 1% K2SO4 alone.


1996 ◽  
Vol 6 (1) ◽  
pp. 19-20 ◽  
Author(s):  
John M. Ruter

Paclobutrazol was applied as a foliar spray, root-medium drench, and impregnated spike to `New Gold' lantana grown in 2.8-liter pots. Plants were treated 14 June 1993 at rates of 0, 0.5, and 1.0 mg a.i. paclobutrazol/pot and were harvested 27 July 1993 when control plants required further pruning. Impregnated spikes reduced plant size and flowering to a greater degree than spray applications. Drenches reduced root dry weight and biomass compared to spray applications. Plants treated with 0.5 and 1.0 mg a.i. paclobutrazol/pot were not different in regards to plant growth and flowering. Compared to nontreated controls, plants treated with paclobutrazol had a reduced growth index, decreased shoot and root dry weight, and fewer flowers with open florets. All plants in the study were marketable, even though growth control was considered excessive. Lower rates than used in this study should be considered for controlling growth. These results suggest that impregnated spike formulations of paclobutrazol may control plant growth in pine bark-based media.


2012 ◽  
Vol 61 (1) ◽  
pp. 137-141 ◽  
Author(s):  
Anna Pobudkiewicz

Growth retardants are applied in order to obtain short and well compact plants. They usually inhibit stem elongation, but also can influence the flowering of plants. The aim of cytokinin application is to obtain well branched plants without removing the apical meristem. Cytokinins usually increase the number of axillary shoots but also can influence flowering. Growth retardants and cytokinins can affect flower size, pedicel length, number of flowers, flower longevity, abortion of flower buds and number of days from potting plants to the first open flower. Flowering of growth retardant and cytokinin treated plants might depend on the method of growth regulator used (foliar spray or soil drench), plant species or even a plant cultivar, but in the highest degree it depends on the growth regulator rate used. These growth regulators, when are applied at rates appropriate for height and habit control, very seldom influence flowering of ornamental plants, but applied at high rates can delay flowering, diminish flower diameter or flower pedicel length and also can decrease the number of flowers per plant. In cultivation of bulb plants, growth retardants, used at very high rates, also cause abortion of flower buds.


2021 ◽  
Vol 4 (2) ◽  
pp. 32-38
Author(s):  
Artúr Botond Csorba ◽  
Mária Tatár ◽  
Erzsébet Buta ◽  
Katalin Molnár ◽  
Erzsébet Domokos ◽  
...  

Abstract The poinsettias were cultivated years ago as medicinal and ornamental plants, too; but in the recent time are in the light of world flower assortment surprising with new shapes and colors in the cold season. The ornamental values of these plants are given by bracts which can have the same size as foliage leaves or even larger. The tendency of floral industry consists in obtaining high quality ornamental plants with superior marketable price. In these regards, the role of plant growth retardants in regulating the growth of poinsettia is important to obtain healthy, compact bushes and extended decoration period. The aim of the paper is to evaluate the effects of plant growth retardants on poinsettia. Five treatments with different retardants were applied as drench or spray. In the experiment four replicates and a total of 144 poinsettias were used. Treatments with paclobutrazol (60 mg/l sprayed), daminozide (2500 mg/l sprayed) and chlormequat chloride (1000 mg/l sprayed), showed the best results in case of marketability.


2018 ◽  
Vol 28 (2) ◽  
pp. 136-142
Author(s):  
Josh B. Henry ◽  
Ingram McCall ◽  
Brian E. Whipker

Chemical plant growth retardants (PGRs) are commonly used to produce compact bedding plants. Few PGRs are labeled for sensitive species because of the concern of excessive restriction of stem elongation or phytotoxicity. Growers are therefore presented with a dilemma: produce untreated plants that may be too tall or risk applying a PGR that can potentially lead to irreversible aesthetic damage to the plant. Nutrient restriction, specifically of phosphorus (P), may be used to control plant height. This study was conducted to determine if restricting P fertilization yielded comparable growth control to plants produced with PGRs. Two cultivars each of new guinea impatiens (Impatiens hawkeri) and angelonia (Angelonia angustifolia) were grown using five fertilizers that varied by P concentration (0, 2.5, 5, 10, and 20 ppm). Half of the plants from each P fertilizer concentration were treated with paclobutrazol at 4 and 5 weeks after transplant for angelonia and new guinea impatiens, respectively. On termination of the experiment, data were collected for height, diameter, and dry weight, which were used to determine a growth index (GI). Angelonia GI values were maximized with 7–9 ppm P, whereas new guinea impatiens GI was maximized with 8–11 ppm P. Concentrations of 3–5 ppm P provided similar height control to plants grown with nonlimiting P and a paclobutrazol application. Concentrations of ≤2.5 ppm P resulted in low-quality plants with visual symptoms of P deficiency. These results indicate that a narrow range of P concentrations may be used to control stem elongation and keep plants compact.


Sign in / Sign up

Export Citation Format

Share Document