scholarly journals Flurprimidol Foliar Sprays and Substrate Drenches Control Growth of `Pacino' Pot Sunflowers

2004 ◽  
Vol 14 (3) ◽  
pp. 411-414
Author(s):  
Brian E. Whipker ◽  
Ingram McCall ◽  
James L. Gibson ◽  
Todd J. Cavins

Flurprimidol substrate drenches at 2 mg a.i. per 15.3 cm (6 inch) pot were more effective on `Pacino' pot sunflowers (Helianthus annuus) than flurprimidol foliar sprays of ≥30 mg.L–1 (ppm), but both treatments resulted in significantly smaller plant height and diameter than the control (28,350 mg = 1 oz). Flurprimidol drenches of 2 mg were comparable in controlling plant height and diameter to the commercial drench recommendations of 2 mg paclobutrazol. The commercial recommendation of daminozide foliar sprays at 4000 mg.L–1 had greater efficacy in controlling plant height than the most effective flurprimidol foliar sprays of ≥30 mg.L–1. Daminozide had no effect on plant diameter, while flurprimidol resulted in narrower plants. Flurprimidol and paclobutrazol drenches of 2 mg offer the economic advantage to producers of increased plant density on greenhouse benches, while plants treated with daminozide would require a greater amount of bench area. Producers should evaluate the trade-offs between the added costs of a drench vs. the higher cost-per-square-foot-week of production space required for a daminozide foliar spray. With these options, producers can select a plant growth regulator (PGR) that best fits their production and market requirements.

2000 ◽  
Vol 10 (1) ◽  
pp. 209-211 ◽  
Author(s):  
Brian E. Whipker ◽  
Ingram McCall

Plant growth retardant (PGR) foliar sprays of daminozide at 4,000 or 8,000 mg·L-1 (ppm) and paclobutrazol drenches of 2 or 4 mg a.i. per pot were applied to `Big Smile', `Pacino', `Sundance Kid', `Sunspot', and `Teddy Bear' pot sunflowers (Helianthus annuus L.) to compare their chemical height control. Plant height varied among the cultivars due to genetic variation. The percentage reduction in plant height from the untreated control only was significant at the PGR level, indicating similar responses of all five cultivars to each PGR rate. Paclobutrazol drenches at 2 mg and daminozide foliar sprays at 4,000 or 8,000 mg·L-1 reduced plant height by about 24% when compared to the control. Paclobutrazol drenches at 4 mg produced plants that were 33% shorter than the control. Plant diameter of `Big Smile', `Pacino', or `Sundance Kid' was unaffected by daminozide, whereas `Sunspot' plants were smaller than the controls. Paclobutrazol drenches at 2 or 4 mg decreased plant diameter for all cultivars except `Teddy Bear', with the reduction being greater as paclobutrazol drench rates increased. The number of inflorescence buds increased by ≥18% with the use of daminozide sprays, while paclobutrazol drenches at 2 or 4 mg had no effect when compared to the untreated control. Paclobutrazol drenches of 2 or 4 mg offer the economic advantage to growers of increased plant density on greenhouse benches, while plants treated with daminozide had an increased bud count but would require a greater amount of bench space.


2006 ◽  
Vol 16 (2) ◽  
pp. 354-356
Author(s):  
Brian E. Whipker ◽  
Ingram McCall ◽  
Brian A. Krug

Flurprimidol was applied as a foliar spray (12.5, 25.0, 37.5, 50.0, or 62.5 mg·L-1) or as a substrate drench (0.015, 0.03, 0.06, 0.12, or 0.24 mg/pot a.i.) to determine its efficacy on `Blue Champion' exacum (Exacum affine). Flurprimidol substrate drenches were more consistent in controlling plant growth than foliar sprays. Substrate drenches of 0.03 mg/pot a.i. or foliar sprays ≥50 mg·L-1 resulted in smaller plant heights and diameters than the untreated control. With the use of flurprimidol, exacum growers have another plant growth regulator (PGR) available to control excessive growth.


HortScience ◽  
1991 ◽  
Vol 26 (2) ◽  
pp. 150-152 ◽  
Author(s):  
Terri Woods Starman

One and two foliar spray and single-drench applications of uniconazole were applied to Eustoma grandiflorum (Raf.) Shinn (lisianthus) `Yodel Blue' to determine optimal concentrations for potted plant height control. A single uniconazole spray at 10.0 mg·liter-1 applied 2 weeks after pinching, two uniconazole applications at 5.0 mg·liter -1 applied 2 and 3 weeks after pinching, or a drench at 1.60 mg a.i. per pot applied 2 weeks after pinching gave equally good height control. At these concentrations, uniconazole was similar in its effect on plant height to daminozide foliar sprays at 7500 and 2500 mg·liter-l applied once and twice, respectively. Drenching with uniconazole at 1.60 mg a.i. per pot did not increase days to flower (DTF), whereas foliar spray applications did. Drenching did not reduce flower size, but increased flower number at time of harvest. Chemical names used: α-cyclopropyl-α-(4-methoxyphenyl)-5-pyrimidinemethanol (ancymidol); butanedioic acid mono(2,2-dimethylhydrazide) (daminozide);(E)-(S)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-pent-1-ene-3-01 (uniconazole).


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 438D-438
Author(s):  
Brian E. Whipker ◽  
Shravan Dasoju

Plant growth retardant (PGR) foliar spray treatments (mg•liter–1) of daminozide at 1000 to 16,000; paclobutrazol from 5 to 80; and uniconazole from 2 to 32 were applied to `Pacino' pot sunflowers (Helianthus annuus) to compare their effectiveness at chemical height control. When the first inflorescence opened, the number of days from seeding until flowering, total plant height measured from the pot rim to the top of the inflorescence, inflorescence diameter, and plant diameter were recorded. Total plant height, plant diameter, inflorescence diameter, and days until flowering were significant for the PGR treatment interaction. Marketable-sized plants grown in the 1.2-liter pots were produced with uniconazole concentrations between 16 and 32 mg•liter–1 or with daminozide concentrations between 4000 and 8000 mg•liter–1. Paclobutrazol foliar sprays up to 80 mg•liter–1 had little effect and higher concentrations or medium drench treatments should be considered.


2005 ◽  
Vol 15 (2) ◽  
pp. 370-373 ◽  
Author(s):  
Brian A. Krug ◽  
Brian E. Whipker ◽  
Ingram McCall ◽  
John M. Dole

Preplant bulb soaks of ancymidol, flurprimidol, paclobutrazol, and uniconazole; foliar sprays of flurprimidol; and substrate drenches of flurprimidol, paclobutrazol, and uniconazole were compared for height control of `Prominence' tulips (Tulipa sp.). Height control was evaluated at anthesis in the greenhouse and 10 days later under postharvest conditions. Substrate drenches of ancymidol, flurprimidol, and paclobutrazol resulted in adequate control using concentrations of 0.5, 0.5, and 1 mg/pot a.i. (28,350 mg = 1 oz), respectively. At these concentrations, ancymidol drenches cost $0.06/pot and paclobutrazol drenches $0.03/pot. Since flurprimidol is not yet available and no price is available, growers will need to assess the cost compared to ancymidol and paclobutrazol. Flurprimidol foliar sprays at <80 mg·L–1 (ppm) were ineffective in controlling height during greenhouse forcing, but during postharvest evaluation 80 mg·L–1 resulted in 14% shorter plants than the untreated control. Preplant bulb soaks of flurprimidol, paclobutrazol, and uniconazole at concentrations of 25, 50, and 10 mg·L–1, respectively, effectively controlled plant height. Preplant plant growth regulator soaks are a cost-effective method of controlling plant height of tulips because of the limited amount of chemical required to treat a large quantity of bulbs.


1998 ◽  
Vol 8 (1) ◽  
pp. 86-88 ◽  
Author(s):  
Brian E. Whipker ◽  
Shravan Dasoju

Plant growth retardant (PGR) foliar sprays (in mg·L−1) of daminozide at concentrations from 1,000 to 16,000; paclobutrazol from 5 to 80; and uniconazole from 2 to 32 were applied to `Pacino' potted sunflowers (Helianthus annuus L.) to compare their effectiveness at chemical height control. Plants were grown in 650-mL or 1.2-L pots. When the first inflorescence started to shed pollen, number of days from seeding until anthesis, total plant height measured from the pot rim to the top of the inflorescence, inflorescence diameter, and plant diameter were recorded. There was no significant difference in plant height between `Pacino' plants grown in 650-mL or 1.2-L pots. Total plant height, plant diameter, inflorescence diameter, and days until flowering were significant for the PGR treatment main effect. Marketable-sized plants grown in the 1.2-L pots were produced with uniconazole concentrations from 16 to 32 mg·L−1 or with daminozide concentrations from 4,000 to 8,000 mg·L−1. Paclobutrazol foliar sprays up to 80 mg·L−1 had little effect, and higher foliar spray concentrations or substrate drench treatments may be needed to effectively control height.


2005 ◽  
Vol 15 (2) ◽  
pp. 373-376 ◽  
Author(s):  
Brian A. Krug ◽  
Brian E. Whipker ◽  
Ingram McCall

Flurprimidol preplant soaks, foliar sprays, and substrate drenches were compared to commercially recommended concentrations of uniconazole as a preplant bulb soak and a foliar spray for height control of `Star Gazer' oriental lily (Lilium hybrids). Foliar sprays of uniconazole at 10 mg·L–1 (ppm) did not control plant height and foliar sprays of flurprimidol concentrations ≥80 mg·L–1 provided only minimal height control. Substrate drenches of flurprimidol at 0.5 mg/pot a.i. (28,350 mg = 1 oz) controlled plant height, resulting in plants 45.3 cm (17.83 inches) tall, which were 24% shorter than the untreated control. Uniconazole preplant bulb soaks of 5 and 10 mg·L–1 controlled plant height, resulting in plants 41.8 cm (16.46 inches) and 37.8 cm (14.88 inches), respectively. Preplant bulb soaks of flurprimidol (25 to 400 mg·L–1) were applied and a concentration of 25 mg·L–1 resulted in plants 47.7 cm (18.78 inches) tall, which were 23% shorter than the untreated control. Flurprimidol substrate drenches and preplant bulb soaks at concentrations of 0.5 mg/pot a.i. and 25 mg·L–1, respectively, were effective in controlling height in `Star Gazer' lily. In Expt. 2, flurprimidol substrate drenches were applied as either a single or two split applications. A one-time flurprimidol substrate drench of 0.5 mg/pot a.i. provided similar control as two split applications of 0.25 mg/pot a.i.


2003 ◽  
Vol 13 (1) ◽  
pp. 132-135 ◽  
Author(s):  
James L. Gibson ◽  
Brian E. Whipker

Vigorous osteospermum (Osteospermum ecklonis) cultivars Congo and Wildside received foliar sprays of daminozide or daminozide + chlormequat (Expt. 1). Both cultivars responded similarly to the plant growth regulator (PGR) treatments. Only a limited amount of plant height control occurred using 5,000 mg·L-1 (ppm) daminozide + 1,500 mg·L-1 chlormequat or 5,000 mg·L-1 daminozide + 3,000 mg·L-1 chlormequat. Flowering was delayed, phytotoxicity was observed, while peduncle length increased, suggesting that higher concentrations of daminozide or chlormequat may or not be effective at any concentration and may result in increased phytotoxicity. In Expt. 2, `Lusaka' received foliar sprays or substrate drenches of paclobutrazol or uniconazole. Foliar sprays ≤80 mg·L-1 paclobutrazol or ≤24 mg·L-1 uniconazole were ineffective in controlling plant growth. Substrate drenches of paclobutrazol (a.i.) at 8 to 16 mg/pot (28,350 mg = 1.0 oz) produced compact plants, but at a cost of $0.23 and $0.46/pot, respectively, would not be economically feasible for wholesale producers to use. Uniconazole drenches were effective in producing compact `Lusaka' osteospermum plants. Uniconazole drench concentrations of 0.125 to 0.25 mg/pot were recommended for retail growers, while wholesale growers that desire more compact plants should apply a 0.25 to 0.5 mg/pot drench. Applying uniconazole would cost $0.06 for a 0.25 mg drench or $0.12 for a 0.5 mg drench.


Author(s):  
S. V. Khatate ◽  
A. V. Patil ◽  
A. B. Jadhav ◽  
D. H. Phalke ◽  
S.T. Pachpute

The experiment was conducted to study the effect of levels of nitrogen and foliar sprays of cattle urine on growth, yield, nutrient uptake and quality of wheat in Inceptisol at Division of Soil Science and Agricultural Chemistry and Animal Husbandry and Dairy Science, College of Agriculture, Pune during Rabi (November) 2018. The experiment was conducted with three levels of nitrogen (0, 75 and 100%) through urea and five levels of cattle urine spray (CUS) (0, 2.5, 5, 7.5 and 10%) (20, 40 and 60 days after sowing (DAS)) replicated thrice in Factorial Completely Randomized Design. Application of 75% N through urea recorded higher plant height, number of tillers, number of functional leaves, leaf length, leaf width, chlorophyll content. However, application of 7.5% cattle urine foliar sprays (at 20, 40, 60 DAS) recorded significantly higher plant height, number of tillers, number of functional leaves, leaf length, leaf width, chlorophyll content. Further, similar both the treatments recorded significantly higher spike length, number of spikelets per spike, number of grains per spike, test weight of wheat. Interaction effect of 75% N through urea along with 7.5% cattle urine foliar sprays (at 20, 40, 60 DAS) recorded significantly higher plant height, number of tillers, number of functional leaves, leaf length, leaf width, chlorophyll content at 30, 50 and 70 DAS of wheat. Significant interaction effect with similar treatment were also recorded significant results for spike length, number of spikelets per spike, number of grains per spike, test weight of wheat. Application of 75% N through urea recorded significantly higher grain (80.03 g pot-1) and straw (100.00 g pot-1) yield of wheat. While foliar spray of cattle urine @ 5% recorded significantly higher grain (72.06 g pot-1) and straw (92.41 g pot-1) yield of wheat. Significant interaction effect among combine application of 75% N through urea along with foliar spray of cattle urine @ 7.5% taken at 20, 40 and 60 DAS reported significantly higher grain (87.67 g pot-1) and straw (114.50 g pot-1) yield of wheat. Nitrogen (3.08 gm pot-1), phosphorus (1.12 gm pot-1) and potassium (3.72 gm pot-1) uptake by wheat was found significantly higher with the application of 75% N through urea than 100% N application. While three foliar spray of cattle urine @7.5% taken at 20, 40 and 60 DAS recorded significantly nitrogen (3.15 gm pot-1), phosphorus (1.09 gm pot-1) and potassium (3.54 gm pot-1) uptake by wheat. But interaction effect for combined application was found non significant for the uptake of nitrogen, phosphorus and potassium.


2001 ◽  
Vol 11 (2) ◽  
pp. 226-230 ◽  
Author(s):  
James L. Gibson ◽  
Brian E. Whipker

Ornamental cabbage and kale (Brassica oleracea var. acephala) plants of cultivars Osaka White and Nagoya Red were treated with paclobutrazol and uniconazole as foliar sprays or substrate drenches. These treatments were compared to the industry standard of daminozide foliar sprays. Applying drenches of paclobutrazol (a.i.) at 4 mg/pot or uniconazole (a.i.) at 1 mg/pot (28,350 mg = 1.0 oz) resulted in 6% or 17%, respectively, shorter `Osaka White' plants while a 2 mg/pot paclobutrazol drench or a uniconazole drench at 0.25 mg/pot resulted in 25% shorter `Nagoya Red' plants. Although effective, the expense of substrate drenches for both plant growth regulators (PGRs) would not be economically feasible for growers to use. Paclobutrazol foliar sprays at concentrations of up to 80 mg·L-1 (ppm) were ineffective in controlling plant height and diameter of either `Osaka White' or `Nagoya Red'. A uniconazole foliar spray of 16 mg·L-1 resulted in 17% shorter `Nagoya Red' plants and 6% shorter `Osaka White' plants. A daminozide foliar spray of 2500 mg·L-1, sprayed twice, resulted in 21% shorter plants for both cultivars. Spraying daminozide would provide optimal height control for the retail grower. Although spraying daminozide twice controlled plant height and costs half the amount of an uniconazole spray at 16 mg·L-1, plant diameter was not affected with daminozide, therefore a wholesale grower who would desire a smaller diameter plant should use a uniconazole spray of 16 mg·L-1.


Sign in / Sign up

Export Citation Format

Share Document