scholarly journals Sweet Corn Nutrient Uptake and Removal

2007 ◽  
Vol 17 (1) ◽  
pp. 82-86 ◽  
Author(s):  
J.R. Heckman

Current emphasis on writing comprehensive nutrient management plans for crop production in the mid-Atlantic region of the United States requires accurate crop nutrient removal values for vegetable crops. Therefore, studies were conducted to measure nutrient uptake in harvested fresh sweet corn (Zea mays) ears in 2003 on a sandy loam soil and in 2004 on a silt loam soil, in New Jersey. Nine varieties were included in the study to represent early, mid-, and late-season hybrids. Corn production practices followed local extension recommendations. The crop was seeded by hand and thinned to ensure a uniform within-row spacing of 9 inches and a population of 23,231 plants/acre. Nutrient concentrations were determined on ear and stover samples oven-dried at 70 °C for 72 hours. Mean nutrient uptake values for full-season varieties based on a typical sweet corn yield of 150 cwt/acre (about 18,396 ears/acre) would be projected to remove (in lb/acre) 51 N, 9.1 P, 34 K, 3.7 S, 2.0 Ca, 3.9 Mg, 0.024 B, 0.09 Fe, 0.044 Mn, 0.014 Cu, and 0.072 Zn. Values for N, P, and K are similar to reference values in Knott's Handbook for Vegetable Growers (4th ed.). Due to smaller ear size, nutrient removal values were generally lower for early and mid-season varieties. In 2004 only, nutrient removal by harvesting the crop residue was also determined by assuming a harvest of 23,231 plants/acre, minus the upper ear for the average full-season hybrid. This biomass was found to remove (in lb/acre) 126 N, 13.4 P, 173 K, 11.6 S, 20.6 Ca, 13.6 Mg, 0.05 B, 0.37 Fe, 0.30 Mn, 0.05 Cu, and 0.13 Zn.

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 942
Author(s):  
Jeffrey M. Novak ◽  
Donald W. Watts ◽  
Gilbert C. Sigua ◽  
Thomas F. Ducey

Biochars are used for soil fertility improvement because they may contain certain elements that plants use as nutrients. However, few studies have demonstrated enhanced crop nutrient uptake. Our study examined nutrient uptake responses of corn (Zea Mays L.) grain and stover over 4 years (Y) after a Goldsboro sandy loam (fine-loamy, siliceous, sub-active, thermic Aquic Paleudults) received different designer biochars and a compost. The designer biochars were produced from lodgepole pine (Pinus contorta) chip (PC), poultry litter (PL), blends with switchgrass (SG; Panicum virgatum), and a SG compost alone. Topsoil treated with 100% PL biochar and blended PC:PL biochar had significantly greater Mehlich 1 (M1) extractable P, K and Na contents compared to the control or other treatments. No significant differences were detected in annual grain nutrient concentrations. In the first corn stover harvest (Y1), significantly greater concentrations of P and K were taken up after treatment with 100% PL biochar, with PC:PL blend and with SG when compared to control. By the fourth corn stover harvest (Y4), nutrient uptake between treatments was not significantly different. Biochar impact on corn stover P, K and Na concentrations was time dependent, suggesting that repeated biochar applications may be needed.


HortScience ◽  
2009 ◽  
Vol 44 (1) ◽  
pp. 73-78 ◽  
Author(s):  
Sharon J.B. Knewtson ◽  
Jason J. Griffin ◽  
Edward E. Carey

Microbial tea from a commercial source and a homemade manure tea were evaluated for 2 years under organic and conventional fertility regimens. Testing with different fertility regimens allowed broader assessment of tea efficacy. Collard green (Brassica oleracea L. var. acephala cv. Top Bunch) yield and soil microbial activity were measured after microbial tea applications were made in three fertility treatments (conventional, organic, or no fertilizer amendment) on a previously unfertilized sandy loam soil. Spinach (Spinacia oleracea L. cv. Hellcat) and collard green yields were determined after commercial microbial tea application to a silt loam soil previously managed with organic or conventional vegetable crops in open fields and under high tunnels. Results indicated that nutrient additions influenced crop yields, even doubling yield. This demonstrated that improved nutrient availability would affect yield at the chosen locations. However, microbial tea applications did not affect crop yield. These results did not support the hypothesis that microbial tea improves plant nutrient uptake. Additionally, soil microbial respiration and biomass were unaffected after two or three tea applications.


1996 ◽  
Vol 6 (4) ◽  
pp. 396-400
Author(s):  
Stratford H. Kay ◽  
Ross B. Leidy ◽  
David W. Monks

Greenhouse studies examined the effects of an aquatic herbicide (fluridone) in irrigation water on four vegetable crops growing on two soils. Tests on Fuquay loamy sand (0.3% humic matter) and Portsmouth fine sandy loam (4.1% humic matter) examined fluridone concentrations ≤250 μg·L−1. Injury to sweet corn (Zea may L.), cucumber (Cucumis sativus L.), bell pepper (Capsicum annum L.), and tomato (Lycopersicon esculentum L.) on these soils varied with soil type and stage of plant growth. Seedlings or new transplants were more susceptible to fluridone damage than older plants. All plants showed more injury on Fuquay loamy sand, which had the lowest humic matter content. Injury to cucumber occurred only to seedlings exposed to 250 μg·L−1 on the Fuquay loamy sand. Bell pepper was the most sensitive crop to fluridone. The “no observed effects level” below which no significant injury of a crop occurred over both soil types and both stages of crop maturity was 5 μg·L−1 for sweet corn, bell pepper, and tomato and 100 μg·L−1 for cucumber.


1997 ◽  
Vol 7 (1) ◽  
pp. 49-55 ◽  
Author(s):  
William R. Argo ◽  
John A. Biernbaum ◽  
Darryl D. Warncke

Chemical analyses of 4306 randomly selected greenhouse water samples for 1995 from the United States and Canada were obtained from four analytical laboratories and graphically characterized using a distribution analysis. For pH, electro-conductivity (EC), and nutrient concentrations, a mean and median value and the percentage of samples with concentrations above or below those generally considered acceptable are presented for all samples and the 10 leading states in floricultural production. The median nutrient concentrations were more representative of the type of water found throughout the United States and Canada than that of the mean values because of the unequal distribution of the data. The overall median water source had a pH of 7.1; an EC of 0.4 dS·m−1; an alkalinity of CaCO3 at 130 mg·L−1; (in mg·L−1) 40 Ca, 11 Mg, 8 SO4−S, 13 Na, 14 Cl, 0.02 B, and <0.01 F; a Ca: Mg ratio of 3.2, and a sodium adsorption ratio (SAR) of 0.7. The information presented characterizes irrigation water and may assist in developing more refined fertilizer recommendations for greenhouse crop production.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1005D-1005 ◽  
Author(s):  
Laura Avila ◽  
Johannes Scholberg ◽  
Nancy Roe ◽  
Corey Cherr

Increased dependency of conventional agriculture on inorganic fertilizers and fossil fuels may hamper long-term sustainability of agricultural production. Sunn hemp (Crotalaria juncea) was tested during summer in a Community Supported Agriculture vegetable crop operation located in Southeast Florida, from 2003 to 2005. Farm system components included sunn hemp (SH) vs. a conventional fallow during summer, tomato (Lycopersicon esculentus) and pepper (Capsicum annum) during winter and spring sweet corn (Zea mays). Tomato and pepper were fertilized with 0, 67, 133, 200 kg N/ha (2003) vs. 0,100, 200 kg N/ha (2004/05). Sweet corn received 133 or 200 kg N ha (2003) vs. 100 kg N/ha (2004/05). Average SH biomass was 3.7 Mg/ha. In 2003 tomato yields following SH without supplemental N were similar to fallow, with 200 kg N/ha. By the third year, tomato and pepper yields in SH plots were 25% and 26% higher, respectively. Conventional pepper amended with 200 kg N/ha had only 8% higher yields than treatments amended with 100 kg N ha and CC. Overall, sweet corn had low yields, but yields increased if the preceding tomato/pepper crop received higher N rates. In 2003, sweet corn fertilized with 200 kg N/ha following a SH-fall vegetable crop produced 17% higher marketable yields compared to the fallow treatment. During 2004 and 2005, sweet corn within the SH-non-fertilized tomato system produced 29% higher yields compared to a similar conventional system. Results show that, in this rotation, both fall vegetable crops and sweet corn yield benefit from residual N fertilizer. Mineralization of SH may thus not only benefit the immediately following crop, but its effects can be seen later during the year.


HortScience ◽  
2002 ◽  
Vol 37 (3) ◽  
pp. 490-495
Author(s):  
Clydette M. Alsup ◽  
Brian A. Kahn ◽  
Mark E. Payton

Hairy vetch (Vicia villosa Roth) cover crops were grown in a rotation with sweet corn (Zea mays var. rugosa Bonaf.) and muskmelon (Cucumis melo L. Reticulatus group) to evaluate the legume's ability to remove excess P from soils when poultry litter was used as a fertilizer. Fertilizer treatments were: 1) litter to meet each crop's recommended preplant N requirements (1×); 2) litter at twice the recommended rate (2×); and 3) urea at the 1× rate as the control. Following the vegetable crops, hairy vetch was planted on half of each replication, while the other half was fallowed. The vetch was removed from the field in a simulated haying operation in the spring. Soil samples were taken at 0-15 cm and 15-30 cm depths at the onset of the study and after each crop to monitor plant nutrient concentrations. The vetch sometimes raised soil test N concentrations at the 0-15 cm depth. Soil test P concentrations at the 0-15 cm sampling depth in the vetch system were consistently lower numerically, but not statistically, relative to comparable plots in the fallow system. Soil test P at the 0-15 cm depth was usually increased by litter at the 2× rate relative to the urea control, regardless of cropping system. Yields of both vegetable crops were similar among all cover crop and fertilizer treatments.


Sign in / Sign up

Export Citation Format

Share Document