scholarly journals Linkage Mapping in a Watermelon Population Segregating for Fusarium Wilt Resistance

2001 ◽  
Vol 126 (3) ◽  
pp. 344-350 ◽  
Author(s):  
Leigh K. Hawkins ◽  
Fenny Dane ◽  
Thomas L. Kubisiak ◽  
Billy B. Rhodes ◽  
Robert L. Jarret

Isozyme, randomly amplified polymorphic DNA (RAPD), and simple sequence repeats (SSR) markers were used to generate a linkage map in an F2 and F3 watermelon [Citrullus lanatus (Thumb.) Matsum. & Nakai] population derived from a cross between the fusarium wilt (Fusarium oxysporum f. sp. niveum) susceptible `New Hampshire Midget' and resistant PI 296341-FR. A 112.9 cM RAPD-based map consisting of 26 markers spanning two linkage groups was generated with F2 data. With F3 data, a 139 cM RAPD-based map consisting of 13 markers covering five linkage groups was constructed. Isozyme and SSR markers were unlinked. About 40% to 48% of the RAPD markers were significantly skewed from expected Mendelian segregation ratios in both generations. Bulked segregant analysis and single-factor analysis of variance were employed to identify RAPD markers linked to fusarium wilt caused by races 1 and 2 of F. oxysporum f. sp. niveum. Current linkage estimates between the resistance trait and the marker loci were too large for effective use in a marker-assisted selection program.

2001 ◽  
Vol 126 (6) ◽  
pp. 730-737 ◽  
Author(s):  
Amnon Levi ◽  
Claude E. Thomas ◽  
Xingping Zhang ◽  
Tarek Joobeur ◽  
Ralph A. Dean ◽  
...  

A genetic linkage [randomly amplified polymorphic DNA (RAPD)-based] map was constructed for watermelon [Citrullus lanatus (Thunb.) Matsum and Nakai] using a BC1 population [PI 296341-fusarium wilt resistant × New Hampshire Midget (fusarium susceptible)] × `New Hampshire Midget'. The map contains 155 RAPD markers, and a 700-base pair sequenced characterized amplified region (SCAR) marker that corresponds to a fragment produced by the RAPD primer GTAGCACTCC. This marker was reported previously as linked (1.6 cM) to race 1 fusarium wilt resistance in watermelon. The markers segregated to 17 linkage groups. Of these, 10 groups included nine to 19 markers, and seven groups included two to four markers. The map covers a genetic linkage distance of 1295 cM. Nine of the 10 large linkage groups contained segments with low (or no) level of recombination (0 to 2.6 cM) among markers, indicating that the watermelon genome may contain large chromosomal regions that are deficient in recombination events. The map should be useful for identification of markers linked closely to genes that control fruit quality and fusarium wilt (races 1 and 2) resistance in watermelon.


HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 558C-558b
Author(s):  
Leigh K. Hawkins ◽  
Fenny Dane ◽  
Tom Kubisiak ◽  
Bill Rhodes ◽  
Bob Jarrett

A linkage map was constructed of the watermelon genome using F2 and F2:3 populations segregating for resistance to race 1 and 2 of Fusarium oxysporum f. sp. niveum (FON 1 and 2). Sixty-four percent of the RAPD primers used in the parents and F1 detected polymorphism. In the F2, 143 polymorphic bands were scored, 60% of which exhibited the expected 3:1 segregation ratio. A 113 cM linkage map was constructed using Mapmaker version 3 and LOD of 4. DNA pools of Fusarium wilt resistant or susceptible F2:3 lines were created and bulked segregant analysis was used to detect molecular markers linked to FON 1 or FON 2 resistance. Four individuals per line were used to confirm linkages and construct an F2:3 linkage map. One large linkage group was detected in both generations. A large proportion of the RAPD and SSR markers were unlinked and many showed segregation distortion. Single-factor ANOVA for each pairwise combination of marker locus and resistance or morphological trait was conducted. RAPD markers with putative linkages to FON 1 and FON 2 and several morphological traits were detected.


2001 ◽  
Vol 31 (8) ◽  
pp. 1456-1461
Author(s):  
M Troggio ◽  
T L Kubisiak ◽  
G Bucci ◽  
P Menozzi

We tested the constancy of linkage relationships of randomly amplified polymorphic DNA (RAPD) marker loci used to construct a population-based consensus map in material from an Italian stand of Picea abies (L.) Karst. in 29 individuals from three Norwegian populations. Thirteen marker loci linked in the Italian stand did show a consistent locus ordering in the Norwegian population. The remaining 16 unlinked marker loci were spread over different linkage groups and (or) too far apart both in the population map and in this study. The limited validity of RAPD markers as genomic "hallmarks" resilient across populations is discussed. We also investigated the reliability of RAPD markers; only 58% of the RAPD markers previously used to construct the consensus map in the Italian population were repeatable in the same material. Of the repeatable ones 76.3% were amplified and found polymorphic in 29 megagametophyte sibships from three Norwegian populations.


HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 716-721 ◽  
Author(s):  
X.Y. Zheng ◽  
David W. Wolff

Three randomly amplified polymorphic DNA (RAPD) markers (E07, G17, and 596) linked to the Fom-2 gene, which confers resistance to race 0 and 1 of Fusarium oxysporum f. sp. melonis, were evaluated by RAPD-polymerase chain reaction for their linkage to Fusarium wilt resistance/susceptibility in diverse melon cultigens (48 resistant, 41 susceptible). Primer 596 was identified in the multiple disease-resistant breeding line MR-1, whereas E07 and G17 were identified in the susceptible `Vedrantais'. The RAPD markers E07 (1.25 kb) and G17 (1.05 kb) correctly matched phenotypes in 88% and 81% of the cultigens. The validity of the RAPD scores was verified by Southern hybridization analysis for sequence homology and bulked segregant analysis of a selected cross population for the linkage. These results will facilitate the introgression of resistance genes into susceptible lines from multiple sources in marker-assisted selection.


2011 ◽  
Vol 136 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Caihong Wang ◽  
Yike Tian ◽  
Emily J. Buck ◽  
Susan E. Gardiner ◽  
Hongyi Dai ◽  
...  

European pear (Pyrus communis) ‘Aihuali’ carrying the dwarf character originating from ‘Nain Vert’ was crossed with ‘Chili’ (Pyrus bretschneideri). A total of 352 F1 progenies was produced to investigate the inheritance of the dwarf trait, and 111 of these were used to develop molecular markers. Chi-square analysis showed that the character fitted a 1:1 ratio indicative of a single dominant gene, which we have named PcDw. Using a bulked segregant analysis approach with 500 random amplified polymorphic DNA (RAPD) and 51 simple sequence repeat (SSR) markers from pear (Pyrus pyrifolia and P. communis) and apple (Malus ×domestica), four markers were identified as cosegregating with the dwarf character. Two of these were fragments produced by the S1212 and S1172 RAPD primers, and the other two were the pear SSR markers KA14 and TsuENH022. The RAPD markers were converted into sequence-characterized amplified regions (SCARs) and designated S1212-SCAR318 and S1172-SCAR930 and, with the SSR markers KA14 and TsuENH022, were positioned 5.9, 9.5, 8.2, and 0.9 cM from the PcDw gene, respectively. Mapping of the KA14 and TsuENH022 markers enabled the location of the PcDw gene on LG 16 of the pear genetic linkage map.


Genome ◽  
2006 ◽  
Vol 49 (4) ◽  
pp. 354-364 ◽  
Author(s):  
G P Gill ◽  
P L Wilcox ◽  
D J Whittaker ◽  
R A Winz ◽  
P Bickerstaff ◽  
...  

A moderate-density linkage map for Lolium perenne L. has been constructed based on 376 simple sequence repeat (SSR) markers. Approximately one third (124) of the SSR markers were developed from GeneThresher® libraries that preferentially select genomic DNA clones from the gene-rich unmethylated portion of the genome. The remaining SSR marker loci were generated from either SSR-enriched genomic libraries (247) or ESTs (5). Forty-five percent of the GeneThresher SSRs were associated with an expressed gene. Unlike EST-derived SSR markers, GeneThresher SSRs were often associated with genes expressed at a low level, such as transcription factors. The map constructed here fulfills 2 definitions of a "framework map". Firstly, it is composed of codominant markers to ensure map transferability either within or among species. Secondly, it was constructed to achieve a level of statistical confidence in the support-for-order of marker loci. The map consists of 81 framework SSR markers spread over 7 linkage groups, the same as the haploid chromosome number. Most of the remaining 295 SSR markers have been placed into their most likely interval on the framework map. Nine RFLP markers and 1 SSR marker from another map constructed using the same pedigree were also incorporated to extend genome coverage at the terminal ends of 5 linkage groups. The final map provides a robust framework with which to conduct investigations into the genetic architecture of trait variation in this commercially important grass species.Key words: Framework map, perennial ryegrass, SSR, simple sequence repeat, GeneThresher, Lolium perenne.


Plant Disease ◽  
2019 ◽  
Vol 103 (5) ◽  
pp. 984-989 ◽  
Author(s):  
Sandra E. Branham ◽  
Amnon Levi ◽  
W. Patrick Wechter

Fusarium wilt race 1, caused by the soilborne fungus Fusarium oxysporum Schlechtend.: Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon), is a major disease of watermelon (Citrullus lanatus) in the United States and throughout the world. Although Fusarium wilt race 1 resistance has been incorporated into several watermelon cultivars, identification of additional genetic sources of resistance is crucial if a durable and sustainable level of resistance is to be continued over the years. We conducted a genetic mapping study to identify quantitative trait loci (QTLs) associated with resistance to Fon race 1 in segregating populations (F2:3 and recombinant inbred lines) of Citrullus amarus (citron melon) derived from the Fon race 1 resistant and susceptible parents USVL246-FR2 and USVL114, respectively. A major QTL (qFon1-9) associated with resistance to Fon race 1 was identified on chromosome 9 of USVL246-FR2. This discovery provides a novel genetic source of resistance to Fusarium wilt race 1 in watermelon and, thus, an additional host-resistance option for watermelon breeders to further the effort to mitigate this serious phytopathogen.


Genome ◽  
1997 ◽  
Vol 40 (4) ◽  
pp. 544-551 ◽  
Author(s):  
Yonghe Bai ◽  
T. E. Michaels ◽  
K. P. Pauls

Seven hundred and fifty-six random primers were screened with bulks of genomic DNA from common bacterial blight (CBB) resistant and susceptible bean plants. The plants were from a breeding population derived from an interspecific cross between Phaseolus acutifolius and Phaseolus vulgaris. Four RAPD markers, named R7313, RE416, RE49, and R4865, were found to be significantly associated with CBB resistance in this population. Forty-nine molecular markers segregating in the population were clustered into 8 linkage groups by a MAPMAKER linkage analysis. The largest linkage group was 140 cM long and contained 25 marker loci, including marker R4865. Markers R7313, RE416, and RE49 were clustered on another linkage group. A regression analysis indicated that the markers in these two groups together accounted for 81% of the variation in CBB resistance in the population. The addition of another marker, M56810, which was not individually associated with CBB resistance, increased the total contribution to the trait to 87%.Key words: Phaseolus vulgaris L., common bacterial blight (CBB), polymerase chain reaction (PCR), RAPD markers, linkage groups.


Euphytica ◽  
2006 ◽  
Vol 149 (1-2) ◽  
pp. 113-120 ◽  
Author(s):  
H. Kotresh ◽  
B. Fakrudin ◽  
S. M. Punnuri ◽  
B. K. Rajkumar ◽  
M. Thudi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document