scholarly journals Simple Sequence Repeat Marker Analysis of Genetic Relationships within Hydrangea macrophylla

2007 ◽  
Vol 132 (3) ◽  
pp. 341-351 ◽  
Author(s):  
Sandra M. Reed ◽  
Timothy A. Rinehart

Genetic diversity studies using 39 simple-sequence repeat (SSR) markers were carried out with 114 taxa of Hydrangea macrophylla (Thunb.) Ser., including 87 H. macrophylla ssp. macrophylla cultivars and 20 members of H. macrophylla ssp. serrata (Thunb.) Makino. The SSR loci were highly variable among the taxa, producing a mean of 8.26 alleles per locus. Overall allelic richness was relatively high at 5.12 alleles per locus. H. macrophylla ssp. serrata contained nearly twice the allelic diversity of H. macrophylla ssp. macrophylla. The majority of genetic diversity was found to reside within the subspecies, with only 12% of the total genetic diversity observed occurring between subspecies. Although the elevation of H. macrophylla ssp. serrata to species level has recently been recommended by several hydrangea authorities, these data support the subspecies designation. Four cultivars (Preziosa, Pink Beauty, Tokyo Delight, and Blue Deckle) appeared to be hybrids between the two subspecies. Genetic similarities were found among five remontant cultivars (Bailmer, Oak Hill, David Ramsey, Decatur Blue, and Penny Mac) and several nonremontant cultivars, including General Vicomtesse de Vibraye, Nikko Blue, All Summer Beauty, and La France. No close genetic relationship was found between the remontant cultivar Early Sensation and other remontant cultivars. Genetic similarities were found among variegated and double-flower cultivars. Within H. macrophylla ssp. macrophylla, cultivars with mophead inflorescences clustered separately from most lacecap cultivars. This indicates the cultivars with lacecap inflorescences that were among some of the earliest introductions to Europe were not widely used in the breeding of mophead forms. Some presumed synonyms were found to be valid (‘Preziosa’ and ‘Pink Beauty’, ‘Rosalba’ and ‘Benigaku’, ‘Geoffrey Chadbund’ and ‘Mowe’), whereas others were not (‘Harlequin’ and ‘Monrey’, ‘Nigra’ and ‘Mandschurica’). This study identified potentially unexploited sources of germplasm within H. macrophylla and relationships between existing cultivars of this popular shrub. This information should be of value when selecting parents for breeding programs.

Author(s):  
Júlia Halász ◽  
Noémi Makovics-Zsohár ◽  
Ferenc Szőke ◽  
Sezai Ercisli ◽  
Attila Hegedűs

AbstractPolyploid Prunus spinosa (2n = 4 ×) and P. domestica subsp. insititia (2n = 6 ×) represent enormous genetic potential in Central Europe, which can be exploited in breeding programs. In Hungary, 16 cultivar candidates and a recognized cultivar ‘Zempléni’ were selected from wild-growing populations including ten P. spinosa, four P. domestica subsp. insititia and three P. spinosa × P. domestica hybrids (2n = 5 ×) were also created. Genotyping in eleven simple sequence repeat (SSR) loci and the multiallelic S-locus was used to characterize genetic variability and achieve a reliable identification of tested accessions. Nine SSR loci proved to be polymorphic and eight of those were highly informative (PIC values ˃ 0.7). A total of 129 SSR alleles were identified, which means 14.3 average allele number per locus and all accessions but two clones could be discriminated based on unique SSR fingerprints. A total of 23 S-RNase alleles were identified and the complete and partial S-genotype was determined for 10 and 7 accessions, respectively. The DNA sequence was determined for a total of 17 fragments representing 11 S-RNase alleles. ‘Zempléni’ was confirmed to be self-compatible carrying at least one non-functional S-RNase allele (SJ). Our results indicate that the S-allele pools of wild-growing P. spinosa and P. domestica subsp. insititia are overlapping in Hungary. Phylogenetic and principal component analyses confirmed the high level of diversity and genetic differentiation present within the analysed accessions and indicated putative ancestor–descendant relationships. Our data confirm that S-locus genotyping is suitable for diversity studies in polyploid Prunus species but non-related accessions sharing common S-alleles may distort phylogenetic inferences.


2011 ◽  
Vol 136 (2) ◽  
pp. 116-128 ◽  
Author(s):  
Xinwang Wang ◽  
Phillip A. Wadl ◽  
Cecil Pounders ◽  
Robert N. Trigiano ◽  
Raul I. Cabrera ◽  
...  

Genetic diversity was estimated for 51 Lagerstroemia indica L. cultivars, five Lagerstroemia fauriei Koehne cultivars, and 37 interspecific hybrids using 78 simple sequence repeat (SSR) markers. SSR loci were highly variable among the cultivars, detecting an average of 6.6 alleles (amplicons) per locus. Each locus detected 13.6 genotypes on average. Cluster analysis identified three main groups that consisted of individual cultivars from L. indica, L. fauriei, and their interspecific hybrids. However, only 18.1% of the overall variation was the result of differences between these groups, which may be attributable to pedigree-based breeding strategies that use current cultivars as parents for future selections. Clustering within each group generally reflected breeding pedigrees but was not supported by bootstrap replicates. Low statistical support was likely the result of low genetic diversity estimates, which indicated that only 25.5% of the total allele size variation was attributable to differences between the species L. indica and L. fauriei. Most allele size variation, or 74.5%, was common to L. indica and L. fauriei. Thus, introgression of other Lagestroemia species such as Lagestroemia limii Merr. (L. chekiangensis Cheng), Lagestroemia speciosa (L.) Pers., and Lagestroemia subcostata Koehne may significantly expand crapemyrtle breeding programs. This study verified relationships between existing cultivars and identified potentially untapped sources of germplasm.


Genome ◽  
2005 ◽  
Vol 48 (5) ◽  
pp. 802-810 ◽  
Author(s):  
Muwang Li ◽  
Li Shen ◽  
Anying Xu ◽  
Xuexia Miao ◽  
Chengxiang Hou ◽  
...  

To determine genetic relationships among strains of silkworm, Bombyx mori L., 31 strains with different origins, number of generations per year, number of molts per generation, and morphological characters were studied using simple sequence repeat (SSR) markers. Twenty-six primer pairs flanking microsatellite sequences in the silkworm genome were assayed. All were polymorphic and unambiguously separated silkworm strains from each other. A total of 188 alleles were detected with a mean value of 7.2 alleles/locus (range 2–17). The average heterozygosity value for each SSR locus ranged from 0 to 0.60, and the highest one was 0.96 (Fl0516 in 4013). The mean polymorphism index content (PIC) was 0.66 (range 0.12–0.89). Unweighted pair group method with arithmetic means (UPGMA) cluster analysis of Nei's genetic distance grouped silkworm strains based on their origin. Seven major ecotypic silkworm groups were analyzed. Principal components analysis (PCA) for SSR data support their UPGMA clustering. The results indicated that SSR markers are an efficient tool for fingerprinting cultivars and conducting genetic-diversity studies in the silkworm.Key words: silkworm, Bombyx mori L., microsatellites, simple sequence repeat (SSR), genetic diversity.


2018 ◽  
Vol 47 (4) ◽  
pp. 937-943
Author(s):  
Natalia Sukhikh ◽  
Valentina Malyarovskaya ◽  
Anastasiya Kamionskaya ◽  
Lidia Samarina ◽  
Svetlana Vinogradova

Genetic diversity and genetic relationships among 39 accessions of Hydrangea macrophylla (Thunb.) Ser. were analyzed using 38 previously developed simple sequence repeat markers (SSRs). A total of 38 polymorphic primers representing 166 bands with an average of 4.53 polymorphic bands per primer were selected. The number of alleles detected per locus ranged from two to eight with a total of 163 alleles amplified. The size of the amplified fragments ranged from 70 to180 base pairs. The effective multiallelic markers with high level of heterozygosity (more than 0.7) and effective number of alleles (more than 3.5) were identified. In this study nine SSR markers showed clear polymorphisms. The dendrogram grouped all hybrids in three major clusters, and two of these clusters included only mophead cultivars. The lacecap cultivars clustered more closely to each other. The results of this research could be used in breeding programs of H. macrophylla.


2010 ◽  
Vol 90 (1) ◽  
pp. 23-33 ◽  
Author(s):  
Y -B. Fu ◽  
R K Gugel

The development of canola quality Brassica napus oilseed cultivars was a major achievement of Canadian public oilseed breeding programs. Simple sequence repeat (SSR) markers were applied to assess the genetic diversity of 300 plants representing one landrace introduced from Argentina in 1943, seven Canadian elite cultivars developed and released by Agriculture and Agri-Food Canada since 1954, and two European cultivars that were the source of the low erucic acid and low glucosinolate traits that define canola quality. Application of 22 SSR primer pairs from eight linkage groups detected 88 polymorphic alleles from 33 likely loci. The allelic frequencies in 300 samples ranged from 0.003 to 0.993 and averaged 0.388. The estimates of mean heterozygosity for these cultivars ranged from 0.055 to 0.203 and averaged 0.139. The most SSR variation was detected in the cultivars Argentine, Golden and Oro. A trend of decline in SSR variation was observed over the years of breeding effort. The proportion of total SSR variation residing among the cultivars was 51.4%; between high vs. low erucic acid cultivars 15% and between high vs. low glucosinolate cultivars 21.2%. Pairwise genetic differentiations among these cultivars ranged from 0.140 to 0.819 and averaged 0.500. Cluster analysis revealed that the genetic relationships of these cultivars were consistent with their known pedigrees. These findings are useful for broadening the genetic base of improved B. napus gene pools, selecting genetically diverse genotypes for hybrid combinations, and conserving summer rape germplasm.Key words: Simple sequence repeat, summer rape, Brassica napus, genetic diversity, genetic relationship, genetic structure


2006 ◽  
Vol 86 (1) ◽  
pp. 251-257 ◽  
Author(s):  
Zhao Weiguo ◽  
Zhou Zhihua ◽  
Miao Xuexia ◽  
Wang Sibao ◽  
Zhang Lin ◽  
...  

The genetic diversity of 27 mulberry (Morus spp.) genotypes mainly from China was investigated using inter-simple sequence repeat (ISSR) markers to assist in addressing breeding objectives and conserving existing genetic resources. Of the 22 primers screened, 15 produced highly reproducible ISSR bands. Using these 15 primers, 138 discernible DNA fragments were generated with 126 (91.3%) being polymorphic, indicating considerable genetic variation among the mulberry genotypes studied. Genetic similarity ranged from 0.6014 between Yu 2 and Yu 711 to 0.9493 between Cuizhisang and Dejiang 10. The phenetic dendrogram based on ISSR data generated by the unweighed pair group method with arithmetical averages (UPGMA) method grouped the 27 accessions into two major clusters: cluster I, cultivated mulberry species (M. multicaulis Perr., M. alba Linn., M. atropurpurea oxb., M. bombycis Kiodz., M. australis Poir., M. rotundiloba Kiodz., M. alba var. pendula Dipp., M. alba var. macrophylla Loud., and M. alba var. venose Delile.); and cluster II, wild mulberry species (M. cathayana Hemsl., M. laevigata Wall., M. wittiorum Hand-Mazz., M. nigra Linn., and M. mongolica Schneid.). Our molecular analyses agree with the existing morphological classification of Morus and clarify the genetic relationships among mulberry species. Key words: Morus L., genetic diversity, inter-simple sequence repeat, relatedness


2007 ◽  
Vol 5 (02) ◽  
pp. 71-81 ◽  
Author(s):  
Serge Tostain ◽  
Clément Agbangla ◽  
Nora Scarcelli ◽  
Cédric Mariac ◽  
Ogoubi Daïnou ◽  
...  

Guinea yam (Dioscorea rotundataPoir.) is a dioecious vegetatively propagated tuber crop. It is widely cultivated by traditional techniques in West Africa, its area of origin. The genetic diversity of 146 accessions from Benin was analysed using 10 polymorphic simple sequence repeat (SSR) nuclear markers and agromorphological traits. An average of 8.4 alleles per locus was detected. The mean heterozygosity was 0.57 and the mean polymorphism information content (PIC) for polymorphic markers was 0.51. Some cultivars (23%) were found to have an identical genotype for the 10 markers. The structure of the genetic diversity observed in Benin is the result of farmers' crop management practices and their know-how. The cultivar diversity had a geographical component. We also noted major differentiation between early and late cultivars, with higher diversity in the early ones. Cultivars from northern Benin and early cultivars had the greatest allelic richness. SSR markers proved to be powerful tools for fingerprinting each cultivar and analysing their genetic relationships. The results of this study could be useful for defining a strategy for the conservation of genetic diversity in yams.


2014 ◽  
Vol 12 (S1) ◽  
pp. S87-S90 ◽  
Author(s):  
Zhenbin Hu ◽  
Guizhen Kan ◽  
Guozheng Zhang ◽  
Dan Zhang ◽  
Derong Hao ◽  
...  

To evaluate the genetic diversity (GD) of wild and cultivated soybeans and determine the genetic relationships between them, in this study, 127 wild soybean accessions and 219 cultivated soybean accessions were genotyped using 74 simple sequence repeat (SSR) markers. The results of the study revealed that the GD of the wild soybeans exceeded that of the cultivated soybeans. In all, 924 alleles were detected in the 346 soybean accessions using 74 SSRs, with an average of 12.49 alleles per locus. In the 219 cultivated soybean accessions, 687 alleles were detected, with an average of 9.28 alleles per locus; in the 127 wild soybean accessions, 835 alleles were detected, with an average of 11.28 alleles per locus. We identified 237 wild-soybean-specific alleles and 89 cultivated-soybean-specific alleles in the 346 soybean accessions, and these alleles accounted for 35.28% of all the alleles in the sample. Principal coordinates analysis and phylogenetic analysis based on Nei's genetic distance indicated that all the accessions could be classified into two major clusters, corresponding to wild and cultivated soybeans. These results will increase our understanding of the genetic differences and relationships between wild and cultivated soybeans and provide information to develop future breeding strategies to improve soybean yield.


Genome ◽  
2003 ◽  
Vol 46 (2) ◽  
pp. 277-290 ◽  
Author(s):  
Eline van Zijll de Jong ◽  
Kathryn M Guthridge ◽  
German C Spangenberg ◽  
John W Forster

Fungal endophytes of the genus Neotyphodium are common in temperate pasture grass species and confer both beneficial and deleterious agronomic characteristics to their hosts. The aim of this study was to develop molecular markers based on simple sequence repeat (SSR) loci for the identification and assessment of genetic diversity among Neotyphodium endophytes in grasses. Expressed sequence tags (ESTs) from both Neptyphodium coenophialum and Neotyphodium lolii were examined, and unique SSR loci were identified in 9.7% of the N. coenophialum sequences and 6.3% of the N. lolii sequences. A variety of SSRs were present, although perfect trinucleotide repeat arrays were the most common. Primers were designed to 50 SSR loci from N. coenophialum and 57 SSR loci from N. lolii and were evaluated using 20 Neotyphodium and Epichloë isolates. A high proportion of the N. coenophialum and N. lolii primers produced amplification products from the majority of isolates and most of these primers detected genetic variation. SSR markers from both N. coenophialum and N. lolii detected high levels of polymorphism between Neotyphodium and Epichloë species, and low levels of polymorphism within N. coenophialum and N. lolii. SSR markers may be used in appropriate combinations to discriminate between species. Comparison with amplified fragment length polymorphism (AFLP) data demonstrated that the SSR markers were informative for the assessment of genetic variation within and between endophyte species. These markers may be used to identify endophyte taxa and to evaluate intraspecific population diversity, which may be correlated with variation for endophyte-derived agronomic traits.Key words: Neotyphodium, simple sequence repeats, expressed sequence tags, amplified fragment length polymorphism, genetic diversity.


Sign in / Sign up

Export Citation Format

Share Document