scholarly journals Effects of Boron Deficiency on Geranium Grown under Different Nonphotoinhibitory Light Levels

2009 ◽  
Vol 134 (2) ◽  
pp. 183-193 ◽  
Author(s):  
Sasmita Mishra ◽  
Scott Heckathorn ◽  
Jonathan Frantz ◽  
Futong Yu ◽  
John Gray

Apart from a role in cell wall structure, specific functions for boron (B) in plants are unclear; hence, responses and adaptations to B stress are incompletely understood. We tested hypotheses that net photosynthesis (Pn) decreases with B deficiency before visible foliar symptoms and that higher nonphotoinhibitory light levels enhance soluble carbohydrate status and therefore mitigate B deficiency. Geranium (Pelargonium ×hortorum L.H. Bailey cv. Nittany Lion Red) plants were grown hydroponically and were then exposed to normal (45 μm) or deficient (0 μm) B at two light levels [100 or 300 μmol·m−2·s−1 photosynthetically active radiation (PAR)]. Photosynthesis [net CO2 uptake, carboxylation, and photosystem II (PSII) efficiency] was monitored for 5 days, as were concentrations of B, chlorophyll, soluble sugars, total protein, and several photosynthetic and stress proteins [ribulose 1,5-bisphospate carboxylase oxygenase (rubisco), rubisco activase, oxygen-evolving complex-23 (OEC23), Cu/Zn-superoxide dismutase (SOD), Mn-SOD, and eukaryotic translation initiation factor 5A-2 (eIF5A-2)]. Biomass and sugar concentration were greater in high light, and mass was decreased by B deficiency only in leaves in high light. Boron deficiency decreased [B] in all tissues, especially in new leaves. Carboxylation efficiency and Pn decreased within 1 day of B deficiency in low light, but not until 5 days in high light. Chlorophyll concentration decreased, and Mn-SOD increased transiently, with B deficiency in both light levels, but no other effects of low B were observed. Protection of Pn by higher light was confirmed in a different cultivar (Maverick White) grown at 100, 300, and 500 μmol·m−2·s−1 PAR. Thus, in geranium, photosynthesis is affected by B deficiency before effects on leaf growth, and higher light can at least temporarily ameliorate B deficiency, perhaps partly due to enhanced carbohydrate status.

2019 ◽  
Vol 2019 (1) ◽  
pp. 320-325 ◽  
Author(s):  
Wenyu Bao ◽  
Minchen Wei

Great efforts have been made to develop color appearance models to predict color appearance of stimuli under various viewing conditions. CIECAM02, the most widely used color appearance model, and many other color appearance models were all developed based on corresponding color datasets, including LUTCHI data. Though the effect of adapting light level on color appearance, which is known as "Hunt Effect", is well known, most of the corresponding color datasets were collected within a limited range of light levels (i.e., below 700 cd/m2), which was much lower than that under daylight. A recent study investigating color preference of an artwork under various light levels from 20 to 15000 lx suggested that the existing color appearance models may not accurately characterize the color appearance of stimuli under extremely high light levels, based on the assumption that the same preference judgements were due to the same color appearance. This article reports a psychophysical study, which was designed to directly collect corresponding colors under two light levels— 100 and 3000 cd/m2 (i.e., ≈ 314 and 9420 lx). Human observers completed haploscopic color matching for four color stimuli (i.e., red, green, blue, and yellow) under the two light levels at 2700 or 6500 K. Though the Hunt Effect was supported by the results, CIECAM02 was found to have large errors under the extremely high light levels, especially when the CCT was low.


2019 ◽  
Vol 15 (6) ◽  
pp. 602-623 ◽  
Author(s):  
Ahmed M. Abdelaziz ◽  
Sarah Diab ◽  
Saiful Islam ◽  
Sunita K.C. Basnet ◽  
Benjamin Noll ◽  
...  

Background:Aberrant expression of eukaryotic translation initiation factor 4E (eIF4E) is common in many types of cancer including acute myeloid leukaemia (AML). Phosphorylation of eIF4E by MAPK-interacting kinases (Mnks) is essential for the eIF4E-mediated oncogenic activity. As such, the pharmacological inhibition of Mnks can be an effective strategy for the treatment of cancer.Methods:A series of N-phenyl-4-(1H-pyrrol-3-yl)pyrimidin-2-amine derivatives was designed and synthesised. The Mnk inhibitory activity of these derivatives as well as their anti-proliferative activity against MV4-11 AML cells was determined.Results:These compounds were identified as potent Mnk2 inhibitors. Most of them demonstrated potent anti-proliferative activity against MV4-11 AML cells. The cellular mechanistic studies of the representative inhibitors revealed that they reduced the level of phosphorylated eIF4E and induced apoptosis by down-regulating the anti-apoptotic protein myeloid cell leukaemia 1 (Mcl-1) and by cleaving poly(ADP-ribose)polymerase (PARP). The lead compound 7k possessed desirable pharmacokinetic properties and oral bioavailability.Conclusion:This work proposes that exploration of the structural diversity in the context of Nphenyl- 4-(1H-pyrrol-3-yl)pyrimidin-2-amine would offer potent and selective Mnk inhibitors.


Sign in / Sign up

Export Citation Format

Share Document