antioxidant metabolism
Recently Published Documents


TOTAL DOCUMENTS

252
(FIVE YEARS 69)

H-INDEX

40
(FIVE YEARS 5)

2023 ◽  
Vol 83 ◽  
Author(s):  
J. A. Linné ◽  
M. V. Jesus ◽  
V. T. Lima ◽  
L. C. Reis ◽  
C. C. Santos ◽  
...  

Abstract Dipteryx alata Vogel is a tree species widely found in Cerrado, settling preferentially in well drained soils. Studies related to ecophysiology of D. alata may contribute to the decision making about using seedlings of this species in projects aimed at the recovery of degraded areas where seasonal flooding happens. This study aimed to assess the effects of flooding on photosynthetic and antioxidant metabolism and quality of D. alata seedlings cultivated or not under flooding during four assessment periods (0, 20, 40, and 60 days), followed by 100 days after the end of each assessment period (0+100, 20+100, 40+100, and 60+100 days), allowing verifying the potential for post-flooding recovery. Flooded plants showed lower photosynthetic efficiency than non-flooded plants, regardless of the periods of exposure. However, this efficiency was recovered in the post-flooding, with values similar to that of the non-flooded seedlings. Moreover, the damage to FV/FM was evidenced by an increase in the period of exposure to flooding, but recovery was also observed at this stage of the photosynthetic metabolism. Seedling quality decreased under flooding, not varying between periods of exposure, but remained lower although the increase observed in the post-flooding period, with no recovery after flooding. The occurrence of hypertrophied lenticels associated with physiological changes and an efficient antioxidant enzyme system might have contributed to the survival and recovery of these seedlings. Thus, this species is sensitive to flooding stress but capable of adjusting and recovering metabolic characteristics at 100 days after the suspension of the water stress, but with no recovery in seedling quality. Thus, we suggested plasticity under the cultivation condition and determined that the time of 100 days is not enough for the complete resumption of growth.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2024
Author(s):  
Fei Cheng ◽  
Min Gao ◽  
Junyang Lu ◽  
Yuan Huang ◽  
Zhilong Bie

Grafting with pumpkin rootstock could improve chilling tolerance in watermelon, and salicylic acid (SA) as a signal molecule is involved in regulating plant tolerance to chilling and other abiotic stresses. To clarify the mechanism in pumpkin rootstock-induced systemic acquired acclimation in grafted watermelon under chilling stress, we used self-grafted (Cl/Cl) and pumpkin rootstock-grafted (Cl/Cm) watermelon seedlings to study the changes in lipid peroxidation, photosystem II (PSII) activity and antioxidant metabolism, the spatio–temporal response of SA biosynthesis and H2O2 accumulation to chilling, and the role of H2O2 signal in SA-induced chilling tolerance in grafted watermelon. The results showed that pumpkin rootstock grafting promoted SA biosynthesis in the watermelon scions. Chilling induced hydrolysis of conjugated SA into free SA in the roots and accumulation of free SA in the leaves in Cl/Cm plants. Further, pumpkin rootstock grafting induced early response of antioxidant enzyme system in the roots and increased activities of ascorbate peroxidase and glutathione reductase in the leaves, thus maintaining cellular redox homeostasis. Exogenous SA improved while the inhibition of SA biosynthesis reduced chilling tolerance in Cl/Cl seedlings. The application of diphenyleneiodonium (DPI, inhibitor of NADPH oxidase) and dimethylthiourea (DMTU, H2O2 scavenger) decreased, while exogenous H2O2 improved the PSII activity in Cl/Cl plants under chilling stress. Additionally, the decrease of the net photosynthetic rate in DMTU- and DPI-pretreated Cl/Cl plants under chilling conditions could be alleviated by subsequent application of H2O2 but not SA. In conclusion, pumpkin rootstock grafting induces SA biosynthesis and redistribution in the leaves and roots and participates in the regulation of antioxidant metabolism probably through interaction with the H2O2 signal, thus improving chilling tolerance in watermelon.


2021 ◽  
Author(s):  
Aiju Meng ◽  
Daxing Wen ◽  
Chunqing Zhang

Spring maize is usually subjected to low-temperature stress during seed germination, which retards seedling growth even if under a suitable temperature. However, the mechanism underlying maize seed germination under low-temperature stress modulating seedling growth after being transferred to normal temperature is still ambiguous. In this study, we used two maize inbred lines with different low-temperature resistance (SM and RM) to investigate the mechanism. The results showed that the SM line had higher lipid peroxidation and lower total antioxidant capacity and germination percentage than the RM line under low-temperature stress, which indicated that the SM line was more vulnerable to low-temperature stress. Further transcriptome analysis revealed that seed germination under low-temperature stress caused down-regulation of photosynthesis related gene ontology (GO) terms in two lines. Moreover, the SM line displayed down-regulation of ribosome and superoxide dismutase (SOD) related genes, whereas genes involved in SOD and vitamin B6 were up-regulated in the RM line. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that photosynthesis and antioxidant metabolism related pathways played important roles in seed germination in response to low-temperature stress, and the photosynthetic system displayed a higher damage degree in the SM line. Both qRT-PCR and physiological characteristics experiments showed similar results with transcriptome data. Taken together, we propose a model for maize seed germination in response to low-temperature stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Min Zhou ◽  
Muhammad Jawad Hassan ◽  
Yan Peng ◽  
Lin Liu ◽  
Wei Liu ◽  
...  

As an important plant growth regulator, the role of γ-aminobutyric acid (GABA) in regulating seeds germination was less well elucidated under water stress. The present study was conducted to investigate the impact of GABA pretreatment on seeds germination of white clover (Trifolium repens) under water deficient condition. Results demonstrated that seeds pretreated with 2μmol/l GABA significantly alleviated decreases in endogenous GABA content, germination percentage, germination potential, germination index, root length, and fresh weight along with marked reduction in mean germination time after 7days of germination under drought stress. In addition, seeds priming with GABA significantly increased the accumulation of soluble sugars, non-enzymatic antioxidants [reduced ascorbate, dehydroascorbic acid, oxidized glutathione (GSSG), and reduced glutathione (GSH)], and enzymes [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathioe reductase, and monodehydroasorbate reductase (MDHR)] activities involved in antioxidant metabolism, which could be associated with significant reduction in osmotic potential and the accumulation of superoxide anion, hydrogen peroxide, electrical leakage, and malondialdehyde in seeds under drought stress. The GABA-pretreated seeds exhibited significantly higher abundance of dehydrin (DHN, 56 KDa) and expression levels of DHNs encoding genes (SK2, Y2K, Y2SK, and Dehydrin b) and transcription factors (DREB2, DREB3, DREB4, and DREB5) than the untreated seeds during germination under water-limited condition. These results indicated that the GABA regulated improvement in seeds germination associated with enhancement in osmotic adjustment, antioxidant metabolism, and DREB-related DHNs expression. Current study will provide a better insight about the GABA-regulated defense mechanism during seeds germination under water-limited condition.


2021 ◽  
Vol 11 (20) ◽  
pp. 9466
Author(s):  
Barbara Łata ◽  
Radosław Łaźny ◽  
Sebastian Przybyłko ◽  
Dariusz Wrona

This study investigated the antioxidant status of roots, leaves, and fruit upon microbial inoculation (AMF+PGPR, arbuscular mycorrhizal fungi, and plant growth-promoting rhizobacteria, respectively) of young organically farmed apple trees over two growing seasons. Three cultivars—‘Topaz’, ‘Chopin’, and ‘Odra’—were selected to test the relationship between inoculation and enzymatic and non-enzymatic antioxidant components. The antioxidant metabolism was highly dependent on tissue type and growing season. The greatest effect on antioxidant status following application of the inoculum was found in roots, then leaves, but it was almost negligible in fruit. Roots were influenced most by application of the inoculum in the first growing season, while leaves were influenced most in the second season. Considerable differences between the inoculated and control plants were found for root glutathione reductase (GR) and catalase (CAT) activity, as well as glutathione and ascorbate contents; root phenolics were not influenced by inoculation. In the case of leaves, effect of microbial inoculation on GR activity was revealed in the first growing season, while for global phenolics in the second season, and only the concentration of glutathione was significantly higher in the leaves of inoculated trees in both growing seasons. Leaf ascorbate content and CAT activity were not influenced by the microbial inoculation. The control and inoculated trees expressed a similar total antioxidant capacity, irrespective of the tissue type tested. Furthermore, the response of the cultivars to inoculation varied and also changed in consecutive growing seasons. Based on this study, it is likely that the effect of microbial inoculum as a tool for enhancing health-promoting properties in the fruit of perennial plants is weaker than that described for vegetables where different plant organs are edible.


2021 ◽  
Vol 20 (4) ◽  
pp. 43-57
Author(s):  
Zahoor Ahmad ◽  
Ejaz Ahmad Warraich ◽  
Muhammad Aamir Iqbal ◽  
Celaleddin Barutçular ◽  
Hesham Alharby ◽  
...  

Silicon (Si) is one of the best plant defense elements against the biotic and abiotic stresses. Camelina plants accumulate Si which serves in protection against drought stress. The present study was conducted to investigate the impact of different doses of foliage applied Si (0, 3, 6 and 9 mM) under water stress (40% field capacity, FC) and non-stress conditions (100% FC) on camelina genotypes (Canadian and Australian). The imposed drought drastically decreased the growth parameters like root-shoot length and plant fresh and dry weight and also had negative impact on the chlorophyll content along with water relation attributes (water potential, osmotic potential and turgor pressure). In contrast, total free amino acids, total soluble proteins, proline and antioxidants such as ascorbic peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were enhanced especially in water stressed Canadian genotype, while osmoprotectants (flavonoids, anthocyanins and glycinebetaine) and phenolics contents were decreased. On the other hand, the foliar application of Si was instrumental in enhancing the growth of camelina by increasing the chlorophyll contents and water relation of stressed and non-stressed plants. Similarly, the biochemical, osmoprotectants and antioxidant metabolism was also improved in camelina stressed plants through the application of foliar Si. In conclusion, foliar application of 6 mM Si at vegetative growth stage played a vital role in alleviating the drastic impact of water stress on camelina growth by improving the water status, chlorophyll content, accumulation of phenolics and osmoprotectants and activating antioxidants. Therefore, the foliar application of Si could be developed as an important biologically viable strategy for boosting the tolerance in camelina plants to water stress conditions.


2021 ◽  
Vol 288 (1957) ◽  
pp. 20211585
Author(s):  
Stefano Bettinazzi ◽  
Liliana Milani ◽  
Pierre U. Blier ◽  
Sophie Breton

Doubly uniparental inheritance (DUI) represents a notable exception to the general rule of strict maternal inheritance (SMI) of mitochondria in metazoans. This system entails the coexistence of two mitochondrial lineages (F- and M-type) transmitted separately through oocytes and sperm, thence providing an unprecedented opportunity for the mitochondrial genome to evolve adaptively for male functions. In this study, we explored the impact of a sex-specific mitochondrial evolution upon gamete bioenergetics of DUI and SMI bivalve species, comparing the activity of key enzymes of glycolysis, fermentation, fatty acid metabolism, tricarboxylic acid cycle, oxidative phosphorylation and antioxidant metabolism. Our findings suggest reorganized bioenergetic pathways in DUI gametes compared to SMI gametes. This generally results in a decreased enzymatic capacity in DUI sperm with respect to DUI oocytes, a limitation especially prominent at the terminus of the electron transport system. This bioenergetic remodelling fits a reproductive strategy that does not require high energy input and could potentially link with the preservation of the paternally transmitted mitochondrial genome in DUI species. Whether this phenotype may derive from positive or relaxed selection acting on DUI sperm is still uncertain.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1099
Author(s):  
Hongyin Qi ◽  
Dingfan Kang ◽  
Weihang Zeng ◽  
Muhammad Jawad Hassan ◽  
Yan Peng ◽  
...  

Persistent high temperature decreases the yield and quality of crops, including many important herbs. White clover (Trifolium repens) is a perennial herb with high feeding and medicinal value, but is sensitive to temperatures above 30 °C. The present study was conducted to elucidate the impact of changes in endogenous γ-aminobutyric acid (GABA) level by exogenous GABA pretreatment on heat tolerance of white clover, associated with alterations in endogenous hormones, antioxidant metabolism, and aquaporin-related gene expression in root and leaf of white clover plants under high-temperature stress. Our results reveal that improvement in endogenous GABA level in leaf and root by GABA pretreatment could significantly alleviate the damage to white clover during high-temperature stress, as demonstrated by enhancements in cell membrane stability, photosynthetic capacity, and osmotic adjustment ability, as well as lower oxidative damage and chlorophyll loss. The GABA significantly enhanced gene expression and enzyme activities involved in antioxidant defense, including superoxide dismutase, catalase, peroxidase, and key enzymes of the ascorbic acid–glutathione cycle, thus reducing the accumulation of reactive oxygen species and the oxidative injury to membrane lipids and proteins. The GABA also increased endogenous indole-3-acetic acid content in roots and leaves and cytokinin content in leaves, associated with growth maintenance and reduced leaf senescence under heat stress. The GABA significantly upregulated the expression of PIP1-1 and PIP2-7 in leaves and the TIP2-1 expression in leaves and roots under high temperature, and also alleviated the heat-induced inhibition of PIP1-1, PIP2-2, TIP2-2, and NIP1-2 expression in roots, which could help to improve the water transportation and homeostasis from roots to leaves. In addition, the GABA-induced aquaporins expression and decline in endogenous abscisic acid level could improve the heat dissipation capacity through maintaining higher stomatal opening and transpiration in white clovers under high-temperature stress.


Sign in / Sign up

Export Citation Format

Share Document