scholarly journals MODELING AND CONTROLLER DESIGN OF PNEUMATIC ACTUATOR SYSTEM WITH CONTROL VALVE

2012 ◽  
Vol 5 (3) ◽  
pp. 624-644 ◽  
Author(s):  
W.K. Lai ◽  
M.F. Rahmat ◽  
N. Abdul Wahab
2013 ◽  
Vol 706-708 ◽  
pp. 1025-1028 ◽  
Author(s):  
Zhi Gang Feng ◽  
Xue Juan Zhang

Actuator, as the execution of the terminal unit of the control system is directly related to the safe and reliable operation of the production process, and once actuators in the system malfunction, will bring huge losses. The research on pneumatic actuator not only devote to the study of its structure, but also need to study the basic theory of the actuator system modeling, and Laid a foundation for the study of the actuator fault diagnosis. Firstly, this paper introduces the components and working principle of the pneumatic actuators which mainly include three parts: pneumatic servomotor, positioner, and control valve. Secondly, the DABlib modules of MATLAB/Simulink as the simulation model of actuator failure are introduced. Finally, we analyzed the common faults of the pneumatic servomotor, positioner, and control valve, and in the MATLAB/Simulink environment, the faults are simulated, and describes the phenomenon of two typical fault.


2014 ◽  
Vol 7 (2) ◽  
pp. 798-819
Author(s):  
N. H. Sunar ◽  
M. F. Rahmat ◽  
Zool Hilmi Ismail ◽  
Ahmad Athif Mohd Faudzi ◽  
Sy Najib Sy Salim

Author(s):  
Meihua Tai ◽  
Ke Xu

Modern applications in robotics such as teleoperations and haptics require high performance force actuators. Pneumatic actuators have significant advantages over electrical motors in terms of force-to-mass ratio. However, position and force control of these actuators in applications that require high bandwidth is not trivial because of the compressibility of air and highly non-linear flow through pneumatic system components. In this paper, we develop a detailed model of a pneumatic actuator system comprised of a double acting cylinder and a proportional servo valve to be used in position, force or hybrid position and force control.


Robotica ◽  
2001 ◽  
Vol 19 (1) ◽  
pp. 87-91 ◽  
Author(s):  
M. Guihard ◽  
P. Gorce

The aim of this paper is to propose a bipedal structure able to follow high acceleration movements. The vertical jump of a human has been chosen as input (coming from experiments) to validate the controller design as it is one of the most complex motion. The study concerns the low level of the biped control that is to say the control design of one leg made of three rigid bodies, each of them moved by a pneumatic actuator. An analogy between a pneumatic actuator and a physiological muscle is first proposed. A dynamic model of the leg is then presented decoupling the dynamic effects of the skeletal (as interactions between segments) from the dynamic effects of the muscles involved. The controller is based on the nonlinear theory (taking into account the actuator and the mechanical models), it ensures a dynamic tracking of position and force. Its originality lays in the consideration of impedance behaviour at each joint during free and constrained tasks. It leads to asymptotically stable (Popov criteria) control laws which are continuous between contact and non-contact phases enabling real-time computations. The simulation results clearly show the tracking of position and forces during the whole jump cycle.


2021 ◽  
Vol 286 ◽  
pp. 04010
Author(s):  
Valentin Nicolae Cococi ◽  
Constantin Călinoiu ◽  
Carmen-Anca Safta

In nowadays the pneumatic controlled systems are widely used in industrial applications where valves must be operated, where there is a fire ignition risk, or in different automation systems where a positioning action is desired. The paper presents the experimental results of a pneumatic actuator controlled by a proportional control valve. The goal of the paper is to compare the experimental results with the numerical simulation results and to improve the mathematical model associated with the experiment.


2021 ◽  
Author(s):  
Mohammed Eltayb

Fault tolerant control (FTC) is essential nowadays in the automation industry. It provides a means for higher equipment availability. Fault in dynamical systems can occur due to the deviation of the system parameters from the normal operating range. Alternatively, it can be a structural change from the normal situation of continuous operation such as the blocking of an actuator due to the mechanical stiction. In this research project, a fault tolerant controller is designed with Matlab Simulink for a feedwater system. The feedwater system components are modified to work under embedded controller design with FTC attached to it. Feedwater systems usually consist of a de-aerator or simply a water storage tank, feedwater pumps, control valves, piping and support fitting elements such as chock valves, anges, hoses and relief valves, beside instrumentation devices like level transmitters, flow transmitters, pressure regulators. The faults are injected separately for each device. Fault diagnostic is used to detect and identify the faults by Limit-checking method. Then a controller is reconfigured to take the action of correcting the hardware failures in the control valve, level sensor, and feedwater pump. The simulation results revealed that the redundant components can take over and handle the process operation when the fault occurs at the duty components. Level sensors are set to work in on-line mode, while the control valves are set to work in off-line mode, due to the mechanical parts movement. Setting the control valves in on-line mode reduces the probability of valve stiction and elongates the component availability. The results reveal the operation of feedwater system is not stopped when a hardware failure takes place in all feedwater system major components. Moreover, the disturbances are not considered in this research as there are many control techniques that can be used to handle the disturbance in a robust way.


Sign in / Sign up

Export Citation Format

Share Document