scholarly journals The use of an automated hematology analyzer to observe cell growth in the chromosome aberration test using human lymphocytes

2010 ◽  
Vol 35 (6) ◽  
pp. 923-927
Author(s):  
Izumi Ogawa ◽  
Satoshi Furukawa ◽  
Masayoshi Abe ◽  
Soichiro Hagio ◽  
Seigo Hayashi ◽  
...  
2006 ◽  
Vol 25 (6) ◽  
pp. 477-485 ◽  
Author(s):  
James C. Griffiths ◽  
Ray A. Matulka ◽  
Ronan Power

Selenium, recognized as an essential nutrient for human health, is a component of proteins and enzymes required for various biological functions and is currently being used as a feed supplement for livestock in geographical areas that are naturally low in selenium. Selenium is structurally similar to sulfur, replacing the sulfur atom in stoichiometric amounts and thus functions through an association with proteins, termed selenoproteins. In geographic areas low in selenium, there is the potential for animals (including humans) to become selenium deficient and this potential deficiency can be remedied by consumption of exogenous selenium, including selenium-enriched yeast ( Saccharomyces cerevisiae) that contains high levels of organic selenium (e.g., selenized yeast). A unique, standardized, registered high selenium food-grade baker’s yeast ( S. cerevisiae; Sel-Plex®), was tested in the following battery of Genotoxicity assays; (1) a bacterial reverse mutation test (Ames test); (2) an in vitro mammalian chromosome aberration test; and (3) a mouse micronucleus test. Under the conditions of this assay, Sel-Plex® showed no evidence of mutagenic activity in Salmonella typhimurium, in the bacterial reverse mutation test. Sel-Plex® did not induce significant chromosomal aberrations in cultured human lymphocytes in the in vitro mammalian chromosome aberration test. Sel-Plex® did not statistically increase the frequency or proportion of micronucleated immature erythrocytes in the mouse micronucleus test. Thus, from the studies presented here, the authors conclude that Sel-Plex® is nongenotoxic.


1999 ◽  
Vol 24 (SupplementI) ◽  
pp. 95-101 ◽  
Author(s):  
Naoki TORITSUKA ◽  
Hirohiko DAIMON ◽  
Shigeki SAWADA ◽  
Fumio SAGAMI ◽  
Piero TIRONE ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Said Incir ◽  
Kerim Erhan Palaoglu

AbstractObjectivesWe performed a verification study of the Sysmex XN-3100 hematology analyzer in comparison with the XE-2100 according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI) and the International Council for Standardization in Hematology (ICSH).Materials and methodsBlood samples and quality control materials were used for precision. For comparison, we used the current XE-2100 as the comparative method and analyzed 540 blood samples. The Passing-Bablok and Bland-Altman tests were performed according to the CLSI EP09-A3 and a carryover study was performed according to the CLSI H26-A2 guidelines. The flagging performance of the two analyzers was compared, using two experienced laboratory technicians as the reference method.ResultsThe Sysmex XN-3100 demonstrated high levels of precision for most parameters. For the comparison analysis, all parameters, except for MCHC, monocytes and basophils were within the systematic error limits of desirable biological variability criterion (SeDBV). The carryover was less than 0.4% for all parameters. The flagging performance of the XN-3100 was satisfactory and the overall efficiency was high.ConclusionsThe XN-3100 not only showed a strong correlation and agreement with the XE-2100 but also displayed a comparable analytical sensitivity, and increased specificity, which may result in an improved turnaround time and throughpu.


2012 ◽  
Vol 27 (5) ◽  
pp. 302-303
Author(s):  
P. Nguyen ◽  
P. Vancles ◽  
L. Rozen ◽  
D. Noubouossie ◽  
A. Demulder

Sign in / Sign up

Export Citation Format

Share Document