scholarly journals Prevalence of Fusarium Wilt Disease of Cucumber (Cucumis sativus Linn) in Peninsular Malaysia Caused by Fusarium oxysporum and F. solani

2020 ◽  
Vol 31 (3) ◽  
pp. 29-45
Author(s):  
Hazirah Mohd Din ◽  
Osamah Rashed ◽  
Khairulmazmi Ahmad

Fusarium wilt disease is one of the most problematic and destructive disease in cucumber production. The causative agents are Fusarium oxysporum and F. solani. These pathogens are soil borne and transmitted through infested soil and water. A field survey was conducted to study the disease prevalence in the major growing areas of cucumber in Peninsular Malaysia. Field study revealed that the disease was highly prevalence in the field with the disease incidence was in the range of 10%–60%. The morphological properties of F. oxysporum are microconidia (3.8–15.7 μm × 2.9–4.9 μm), macroconidia (14.8–38.5 μm × 2.4–5.7 μm) and number of septate was 1–4. While for F. solani are microconidia (3.39–14.63 μm × 2.36–4.44 μm), macroconidia (7.22–50.46 μm × 2.43–6.14 μm) and number of septate was 1–5. Based on molecular identification had confirmed that the disease is caused by F. oxysporum and F. solani with similarity index of 99%–100% based on internal transcribed spacer (ITS) gene sequences. The pathogenicity test showed that the symptoms of Fusarium wilt disease was firstly appeared as yellowing of old leaves. Progressively, the infected plant will be wilted and finally died. The outputs of this study are highly important to establish an effective disease management programme to reduce disease prevalence and yield loss in the field.

Plant Disease ◽  
2021 ◽  
Author(s):  
Muhammad Ziaur Rahman ◽  
Khairulmazmi Ahmad ◽  
Yasmeen Siddiqui ◽  
Norsazilawati Saad ◽  
Tan Geok Hun ◽  
...  

Fusarium wilt disease incited by Fusarium oxysporum f. sp. niveum (FON) is the utmost devastating soil-inhabiting fungal pathogen limiting watermelon (Citrullus lanatus) production in Malaysia and globally. The field disease survey of fusarium wilt was carried out during December 2019 and November 2020, in three major production areas (3 farmer fields per location) in Peninsular Malaysia namely, Mersing, Serdang and Kuantan and disease incidence of 30 and 45%, was recorded for each year, respectively. Infected watermelon plants showed symptoms such as vascular discoloration, brown necrotic lesions to the soil line or the crown, one-sided wilt of a plant, or a runner or the whole plant. Infected root and stem tissues, 1-2 cm pieces were surface sterilized with 0.6% NaOCl for 1 minute followed by double washing with sterile water. The disinfected tissues were air-dried and transferred onto semi-selective Komada’s medium (Komada 1975) and incubated for 5 days. The fungal colonies produced were placed on potato dextrose agar (PDA) to attain a pure culture and incubated at 25±2℃ for 15 days. The pure fungal colony was flat, round and light purple in color. Macroconidia were straight to slightly curved, 18.56-42.22 µm in length, 2.69-4.08 µm width, predominantly 3 septate and formed in sporodochia. Microconidia measured 6.16-10.86 µm in length and 2.49-3.83 µm in width, kidney-shaped, aseptate and were formed on short monophialides in false-heads. Chlamydospores were single or in pairs with smooth or rough walls, found both terminally or intercalary. To confirm their pathogenicity, two-week-old watermelon seedlings (cv. NEW BEAUTY) were dipped into spore suspension (1 ˟ 106 spores/ml) of representative isolates of JO20 (Mersing), UPM4 (Serdang) and KU41 (Kuantan) for 30 second and then moved into 10 cm diameter plastic pots containing 300 g sterilized soil mix. Disease symptoms were assessed weekly for one month. Control seedlings were immersed in sterile distilled water before transplanting. The inoculated seedlings showed typical Fusarium wilt symptoms like yellowing, stunted growth, and wilting, which is similar to the farmer field infected plants. However, the seedlings inoculated by sterile distilled water remained asymptomatic. The pathogen was successfully re-isolated from the infected seedlings onto Komada’s medium, fulfilling the Koch’s postulate. For the PCR amplification, primers EF-1 and EF-2 were used to amplify the tef1-α region. A Blastn analysis of the tef1-α sequences of the isolates JO20 (accession nos. MW315902), UPM4 (MW839560) and KU41 (MW839562) showed 100% similarity; with e-value of zero, to the reference sequences of F. oxysporum isolate FJAT-31690 (MN507110) and F. oxysporum f. sp. niveum isolate FON2 790-2 (MN057702). In Fusarium MLST database, isolates JO20, UPM4 and KU41 revealed 100% identity with the reference isolate of NRRL 22518 (accession no. FJ985265). Though isolate FJ985265 belongs to the f. sp. melonis, earlier findings had revealed Fusarium oxysporum f. sp. are naturally polyphyletic and making clusters with diverse groups of the Fusarium oxysporum species complex (O’Donnell et al. 2015). The isolates JO20, UPM4 and KU41 were identified as F. oxysporum f. sp. niveum based on the aligned sequences of tef1-α and molecular phylogenetic exploration by the maximum likelihood method. To the best of our knowledge, this is the first report of F. oxysporum f. sp. niveum as a causative pathogen of Fusarium wilt disease of watermelon in Malaysia. Malaysia enables to export watermelon all-year-round in different countries like Singapore, Hong-Kong, The United Arab Emirates (UAE), and Netherlands. The outburst of this destructive soil-borne fungal pathogen could cause hindrance to watermelon cultivation in Malaysia. Thus, growers need to choice multiple management tactics such as resistant varieties, cultural practices (soil amendments and solarization), grafting, cover crops and fungicide application to control this new pathogen.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Yigrem Mengist ◽  
Samuel Sahile ◽  
Assefa Sintayehu ◽  
Sanjay Singh

A 2-year experiment was conducted at wilt sick plot infested with natural occurring Fusarium oxysporum f.sp. ciceris at Adet Agricultural Research Center in northwestern Ethiopia with an aim to evaluate effective chickpea varieties and fungicides for the management of chickpea fusarium wilt in order to integrate chickpea varieties and fungicides. Four varieties, namely, Shasho, Arerti, Marye, and local, two fungicides, namely, Apron Star and mancozeb, and untreated local chickpea were used as treatments. Treatments were arranged in a factorial combination in randomized complete block design in three replications. There were significant differences at p<0.05 in the overall mean of fusarium wilt disease incidence, area under disease progress curve %-day, yield and yield components among varieties and fungicides treatments. Data were analyzed using SAS system version 9.2. The results indicated that the maximum disease incidence and area under disease progress curve values 65.62% and 578.5%-day, respectively, were recorded from untreated local chickpea, while the minimum disease incidence and area under disease progress curve values 23.41% and 147%-day, respectively, were recorded from Shasho variety treated with Apron Star. The maximum biomass and grain yield of 6.71 t/ha and 4.6 t/ha, respectively, were recorded from Shasho variety treated with Apron Star while the minimum biomass and grain yield of 0.62 t/ha and 0.21 t/ha, respectively, were recorded from untreated local chickpea. Thus, the experiment results suggested that the variety of Shasho treated with fungicide Apron Star caused significant reduction in chickpea fusarium wilt incidence leading to a corresponding increase in grain yield of chickpea.


2020 ◽  
Vol 6 (2) ◽  
pp. 29
Author(s):  
GEMBONG DALMADIYO ◽  
CECE SUHARA ◽  
SUPRIYONO SUPRIYONO ◽  
SUDJINDRO SUDJINDRO

<p><strong>Evaluation on the resistance of kenaf accessions (Hibis¬ cus cannabinus /..) to Fusarium oxysporum Schlect</strong></p><p>Resistant variety is one of the most important components controlling of fusarium wilt disease on kenaf caused by Fusarium oxysporum Schlect. To ind out resistant variety an evaluation on kenaf accessions was conducted in the laboratory and screen house of Phytopathology, RITFC, Malang in June-December 1997. The results of the selection on 77 accessions showed that 41 accessions were highly resistant, 1 2 accessions were resistant, 7 accessions were moderate, 12 accessions were susceptible, and 5 accessions were highly susceptible Three resistant and highly resistant accessions were namely 85-9-73, DS/005 H, and FJ/004 He could inhibit F. oxysporum growth about 23.40- 32.43 mm and its discolorisation about 0.0-13.4%.</p>


Author(s):  
M. Sangeetha ◽  
K. Indhumathi ◽  
P. S. Shanmugam

Chickpea is an important pulse crop grown during rabi season in black soil areas of Dharmapuri District. Among the various biotic and abiotic factors, the drought stress and fusarium wilt disease incidence are the major problems that reduces the chickpea yield to a greater extent. To overcome the above problems, the varieties viz., JAKI 9218 and GBM 2 were studied in comparison with farmers practice i.e., CO 4 for identification of suitable drought and disease tolerant high yielding variety for prevailing rainfed condition. The results revealed that JAKI 9218 and GBM 2 were found promising under rainfed condition and recorded the grain yield of 1008 and 933 kg/ha as compared to 808 kg/ha in CO 4. The variety JAKI 9218 proved to be superior with a yield increase of 24.7 per cent over CO 4 and 8.04 per cent over GBM 2. The pod borer and fusarium wilt disease incidence were lower in the variety JAKI 9218. The highest net income of Rs. 22158 /- and benefit cost ratio of 2.16 was realized in JAKI 9218 and the lowest net income of Rs. 13958 /- and benefit cost ratio of 1.77 was realized in farmers practice i.e., CO 4. It is concluded from the study that the chickpea variety JAKI 9218 can be recommended for large scale cultivation under rainfed condition of Dharmapuri district for realizing higher return by the farmers.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1326-1332 ◽  
Author(s):  
Anthony P. Keinath ◽  
Richard L. Hassell

Fusarium wilt of watermelon, caused by the soilborne fungal pathogen Fusarium oxysporum f. sp. niveum race 2, is a serious, widespread disease present in major watermelon-growing regions of the United States and other countries. ‘Fascination,’ a high yielding triploid resistant to race 1, is grown in southeastern states in fields that contain a mixture of races 1 and 2. There is some benefit to using cultivars with race 1 resistance in such fields, even though Fascination is susceptible to Fusarium wilt caused by race 2. Experiments in 2012 and 2013 were done in fields infested primarily with race 2 and a mixture of races 1 and 2, respectively. Fascination was grafted onto four rootstock cultivars: bottle gourd (Lagenaria siceraria) ‘Macis’ and ‘Emphasis’ and interspecific hybrid squash (Cucurbita maxima× C. moschata) ‘Strong Tosa’ and ‘Carnivor.’ Nongrafted and self-grafted Fascination were used as susceptible control treatments. In both experiments, mean incidence of plants with symptoms of Fusarium wilt was ≥52% in the susceptible control treatments and ≤6% on the grafted rootstocks. Disease incidence did not differ between rootstock species or cultivars. In both years, Fascination grafted onto Strong Tosa and Macis produced more marketable-sized fruit than the susceptible control treatments. Grafted Emphasis and Carnivor also produced more fruit than the control treatments in 2012. The cucurbit rootstocks suppressed Fusarium wilt caused by race 2 and increased marketable yield of triploid watermelon grown in infested soil.


2018 ◽  
Vol 42 (4) ◽  
pp. 599-607
Author(s):  
L Yasmin ◽  
MA Ali ◽  
FN Khan

The efficacy of fungicides in controlling Fusarium wilt of gladiolus was studied at Horticulture Research Centre (HRC), Bangladesh Agricultural Research Institute (BARI), Gazipur during 2010-2012 following RCB design with four replications. Six fungicides such as Bavistin (0.1%), Provax (0.2%), Mancozeb (0.2%), Rovral (0.2%), Chlorax (10%) and Cupravit (0.7%) were evaluated against the Fusarium wilt disease of gladiolus (Fusarium oxysporum f. sp. gladioli) under naturally infested field condition. Bavistin was very effective in reducing the disease incidence and thereby resulting maximum corm germination (99.98%), spike length (73.90 cm), rachis length (43.70 cm), florets spike-1 (12.63), flower sticks plot-1 (38.75) and corm plot-1 (60.23) and cormel yield ha-1 (2.51 t) of gladiolus. Provax and Cupravit were also effective in inhibiting the disease incidence as well as better spike length, rachis length, florets spike-1, no of flower sticks, corm and cormel yield.Bangladesh J. Agril. Res. 42(4): 599-607, December 2017


Sign in / Sign up

Export Citation Format

Share Document