Identifying Crowding Stress-Tolerant Hybrids in Processing Sweet Corn

2015 ◽  
Vol 107 (5) ◽  
pp. 1782-1788 ◽  
Author(s):  
Martin M. Williams
Keyword(s):  
PLoS ONE ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. e0147418 ◽  
Author(s):  
Eunsoo Choe ◽  
Jenny Drnevich ◽  
Martin M. Williams

PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0223107 ◽  
Author(s):  
Daljeet S. Dhaliwal ◽  
Martin M. Williams

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253190
Author(s):  
Eunsoo Choe ◽  
Younhee Ko ◽  
Martin M. Williams

Crop tolerance to crowding stress, specifically plant population density, is an important target to improve productivity in processing sweet corn. Due to limited knowledge of biological mechanisms involved in crowding stress in sweet corn, a study was conducted to 1) investigate phenotypic and transcriptional response of sweet corn hybrids under different plant densties, 2) compare the crowding stress response mechanisms between hybrids and 3) identify candidate biological mechanisms involved in crowding stress response. Yield per hectare of a tolerant hybrid (DMC21-84) increased with plant density. Yield per hectare of a sensitive hybrid (GSS2259P) declined with plant density. Transcriptional analysis found 694, 537, 359 and 483 crowding stress differentially expressed genes (DEGs) for GSS2259P at the Fruit Farm and Vegetable Farm and for DMC21-84 at the Fruit Farm and Vegetable Farm, respectively. Strong transcriptional change due to hybrid was observed. Functional analyses of DEGs involved in crowding stress also revealed that protein folding and photosynthetic processes were common response mechanisms for both hybrids. However, DEGs related to starch biosynthetic, carbohydrate metabolism, and ABA related processes were significant only for DMC21-84, suggesting the genes have closer relationship to plant productivity under stress than other processes. These results collectively provide initial insight into potential crowding stress response mechanisms in sweet corn.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daljeet S. Dhaliwal ◽  
Elizabeth A. Ainsworth ◽  
Martin M. Williams

Over the last six decades, steady improvement in plant density tolerance (PDT) has been one of the largest contributors to genetic yield gain in field corn. While recent research indicates that PDT in modern sweet corn hybrids could be exploited to improve yield, historical changes in PDT in sweet corn are unknown. The objectives of this study were to: (a) quantify the extent to which PDT has changed since introduction of hybrid sweet corn and (b) determine the extent to which changes over time in PDT are associated with plant morpho-physiological and ear traits. An era panel was assembled by recreating 15 sugary1 sweet corn hybrids that were widely used at one time in the United States, representing hybrids since the 1930s. Era hybrids were evaluated in field experiments in a randomized complete block design with a split-plot arrangement of treatments, including hybrid as the main factor and density as the split-plot factor. Plant density treatments included “Low” plant density (9,900 plants/ha) free of crowding stress or “High” plant density (79,000 plants/ha) with crowding stress. On average, per-area marketable ear mass (Mt/ha) increased at a rate of 0.8 Mt/ha/decade at High densities, whereas per-plant yield (i.e., kg/plant) remained unchanged over time regardless of the density level. Crate yield, a fresh market metric, improved for modern hybrids. However, processing sweet corn yield metrics like fresh kernel mass and recovery (amount of kernel mass contributing to the fresh ear mass) showed modest or no improvement over time, respectively. Modern sweet corn hybrids tend to have fewer tillers and lower fresh shoot biomass, potentially allowing the use of higher plant density; however, plant architecture alone does not accurately predict PDT of individual hybrids.


Author(s):  
Henry G. Taber ◽  
Vincent Lawson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document