scholarly journals Historical Trends in Sweet Corn Plant Density Tolerance Using Era Hybrids (1930–2010s)

2021 ◽  
Vol 12 ◽  
Author(s):  
Daljeet S. Dhaliwal ◽  
Elizabeth A. Ainsworth ◽  
Martin M. Williams

Over the last six decades, steady improvement in plant density tolerance (PDT) has been one of the largest contributors to genetic yield gain in field corn. While recent research indicates that PDT in modern sweet corn hybrids could be exploited to improve yield, historical changes in PDT in sweet corn are unknown. The objectives of this study were to: (a) quantify the extent to which PDT has changed since introduction of hybrid sweet corn and (b) determine the extent to which changes over time in PDT are associated with plant morpho-physiological and ear traits. An era panel was assembled by recreating 15 sugary1 sweet corn hybrids that were widely used at one time in the United States, representing hybrids since the 1930s. Era hybrids were evaluated in field experiments in a randomized complete block design with a split-plot arrangement of treatments, including hybrid as the main factor and density as the split-plot factor. Plant density treatments included “Low” plant density (9,900 plants/ha) free of crowding stress or “High” plant density (79,000 plants/ha) with crowding stress. On average, per-area marketable ear mass (Mt/ha) increased at a rate of 0.8 Mt/ha/decade at High densities, whereas per-plant yield (i.e., kg/plant) remained unchanged over time regardless of the density level. Crate yield, a fresh market metric, improved for modern hybrids. However, processing sweet corn yield metrics like fresh kernel mass and recovery (amount of kernel mass contributing to the fresh ear mass) showed modest or no improvement over time, respectively. Modern sweet corn hybrids tend to have fewer tillers and lower fresh shoot biomass, potentially allowing the use of higher plant density; however, plant architecture alone does not accurately predict PDT of individual hybrids.

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 478E-478 ◽  
Author(s):  
Xiuming Hao

In summer 1998, two sh2, fresh-market, sweet corn cultivars (`Candy Corner'—large plant size, and `Swifty'—small plant size) were grown at 5, 6.5, 8, and 9.5 plants/m2 to investigate the effects of plant density on growth, photosynthesis, biomass, yield, and quality. Biomass and leaf area per plant were not affected by plant density. Therefore, biomass and leaf area per unit area were increased with increasing plant density. Plant height, leaf chlorophyll, leaf photosynthesis, and transpiration (measured with the LI-COR 6400 portable photosynthesis system) were not affected by plant density. Total cob weight (husk off) and number of ears harvested from plants were increased with increasing plant density. However, marketable yield (number of marketable ears) was not affected by plant density and marketable cob weight (husk off) decreased with increasing plant density due to the reduction in ear size with high plant density. There was a significant increase in percentage of unmarketable ears at plant density higher than 6.5 plant/m2 with `Candy Corner'. Kernel sugar content (°Brix) in both cultivars increased with plant density. According to the results of this experiment, the optimum plant density for fresh-market sweet corn was 5 to 6 plants/m 2.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253190
Author(s):  
Eunsoo Choe ◽  
Younhee Ko ◽  
Martin M. Williams

Crop tolerance to crowding stress, specifically plant population density, is an important target to improve productivity in processing sweet corn. Due to limited knowledge of biological mechanisms involved in crowding stress in sweet corn, a study was conducted to 1) investigate phenotypic and transcriptional response of sweet corn hybrids under different plant densties, 2) compare the crowding stress response mechanisms between hybrids and 3) identify candidate biological mechanisms involved in crowding stress response. Yield per hectare of a tolerant hybrid (DMC21-84) increased with plant density. Yield per hectare of a sensitive hybrid (GSS2259P) declined with plant density. Transcriptional analysis found 694, 537, 359 and 483 crowding stress differentially expressed genes (DEGs) for GSS2259P at the Fruit Farm and Vegetable Farm and for DMC21-84 at the Fruit Farm and Vegetable Farm, respectively. Strong transcriptional change due to hybrid was observed. Functional analyses of DEGs involved in crowding stress also revealed that protein folding and photosynthetic processes were common response mechanisms for both hybrids. However, DEGs related to starch biosynthetic, carbohydrate metabolism, and ABA related processes were significant only for DMC21-84, suggesting the genes have closer relationship to plant productivity under stress than other processes. These results collectively provide initial insight into potential crowding stress response mechanisms in sweet corn.


2014 ◽  
Vol 17 (4) ◽  
pp. 289-295
Author(s):  
Seonghyu Shin ◽  
Jin-Seok Lee ◽  
Beom-Young Son ◽  
Jung-Tae Kim ◽  
Sang Gon Kim ◽  
...  

Author(s):  
V. Polyakov ◽  

The article presents the results of research on the formation of corn yield for grain depending on the elements of cultivation technology in the Forest-Steppe of Ukraine. The goal of the research was to identify the influence of plant density and fertilizer system on the yield of corn hybrids for grain. The research was conducted during 2017-2019 in the research field of Bila Tserkva National Agrarian University (Bila Tserkva NAU). Research methods: field, calculation and statistical. Results. Regularities of growth, development and formation of yield by plants are revealed, both in concrete conditions of years of researches, and taking into account average long-term values taking into account features of hybrid-oriented technology. According to the results of the experiment it was recorded that the maximum yields for growing early-maturing maize hybrid DN PIVYHA with FAO 180 in general were obtained at a pre-harvest density of 75 thousand units/ha and the use of combined organo-mineral fertilizer system - 11.09 t/ha; medium-early maize hybrid DN ORLYK, FAO 280 in general in the experiment provided a grain yield of 9.60 t/ha, and in terms of 2017 - 7.86 t/ha, in 2018 - 11.22 t/ha and in 2019 - 9, 72 t/ha, but the medium-ripe hybrid of corn DN SARMAT, FAO 380 provided a grain yield of 10.81 t/ha, and in the context of 2017 - 9.31 t/ha, in 2018 - 11.68 t/ha and in 2019 - 11.44 t/ha. Significant influence on the formation of the yield of corn has a hybrid factor (27 %), fertilizer system determines the level of productivity by 21 % and interacts closely with the conditions of the growing season (factor BV 9 %), growing season conditions also determine the level of productivity of corn plants (19 %), and the pre-harvest density determines this feature by 18 %. Conclusions: In the conditions of the Right Bank part of the Forest-Steppe of Ukraine there is an increase in the level of productivity of maize hybrids from early to medium-ripe hybrids, regardless of the influence of other experimental factors.


2016 ◽  
Vol 7 (1) ◽  
pp. 112 ◽  
Author(s):  
Jamal-Ali Olfati ◽  
Mohammad-Bagher Mahdieh-Najafabadi ◽  
Mohammad Rabiee

Garlic is primarily grown for its cloves used mostly as a food flavoring condiment. Previous studies carried out on plant density indicate its direct influence on yield. Plant density depends on the genotype, environmental factors, cultural practices, etc. This study was established to determine the effects of different between-row spacing on growth, yield, and quality of four local accession of garlic. It was laid out on two-factorial Randomized Complete Block Design with three replications during two years. Four local accession of garlic (Langroud, Tarom, Tabriz and Hamedan) were culture in three between-rows spacing (15, 25 and 35 cm) during two years. The results of two cultivated years were different. Plant density changed when garlic cultured with different between row spacing. In present research plant yield increased when the lower between row spacing and high plant density were used but the yield improvement occurring at increased plant stand is offset by the reduction in bulb size and some quality indices such as total phenol and antioxidant which severely affects quality and market value, when garlic is produced for fresh market.


2011 ◽  
pp. 105-108
Author(s):  
Ádám Lente

The effect of three agrotechnical factors (sowing time, fertilization, plant density) and two genotypes on the crop yield of sweet corn was examined on chernozem soil in the Hajdúság region in two different crop years. Compared to the 30-year average, the climate was dry and warm in 2009 and humid in 2010. The experiments were conducted at the Látókép Research Site of the University of Debrecen. In the experiments we applied two sowing times (end of April, end of May), six fertilization levels (control, N30+PK, N60+PK, N90+PK, N120+PK, N150+PK) and two crop density levels (45 thousand ha-1, 65 thousand ha-1). The hybrids we used were Jumbo and Enterprise. As regards the requirements of sweet corn production, the crop year of 2009 was dry and warm. The effect of moisture deficiency was more adverse on the crop yields with the second sowing time. On the contrary, the other examined year (2010) was significantly humid; the precipitation was 184 mm above the 30-year average and the temperature was average.In the dry and hot crop year, the best yields were obtained with the hybrid Jumbo (25677 kg-1) at 65 thousand ha-1 plant density level on the average of the fertilization levels. The crop yields of Enterprise were also the highest at high plant density level (24444 kg ha-1). With the second sowing time the highest yields were obtained at the higher plant density level (65 thousand ha-1) with both hybrids (Jumbo 18978 kg ha-1, Enterprise 18991 kg ha-1), which confirmed the good adaptation capability of these hybrids at high plant density level. In humid crop year with early sowing time the highest yielding hybrid was Enterprise (at 45 thousand ha-1 crop density level 20757 kg-1), at the same time, Jumbo was best yielding at the higher plant density level (18781 kg-1). With the second sowing time the highest crop yield was obtained with Enterprise again (20628 kg ha-1 at 65 thousand ha-1 plant density level). With this sowing time the average yields of Jumbo, was 18914 kg ha-1 respectively. We found that dry crop year and early sowing time provided the best conditions for sweet corn production; the highest yields were obtained under these circumstances, which might be the results of the outstanding water management of chernozem  soils.


Plant Disease ◽  
1999 ◽  
Vol 83 (12) ◽  
pp. 1177-1177 ◽  
Author(s):  
J. K. Pataky ◽  
W. F. Tracy

Single, dominant resistance genes have been used successfully for the past 15 years to control common rust, caused by Puccinia sorghi, on sweet corn in the United States. Most sweet corn hybrids grown in the Midwest for mid- to late-season processing have Rp resistance, which is expressed as hypersensitive reactions resulting in chlorotic or necrotic flecks with little or no formation of urediniospores. Many, but not all, Rp-resistant sweet corn hybrids carry the gene Rp1D. Biotypes of P. sorghi in North America have been avirulent on plants with the Rp1D gene, except for an isolate collected in Kansas in 1990 (1). In a sweet corn nursery in Urbana, IL, in 1997, small uredinia of P. sorghi occurred on 27 of 79 Rp-resistant sweet corn hybrids that also were infected severely with southern rust caused by P. polysora (2). During August and September 1999, small uredinia or fully susceptible reactions to common rust were observed on several Rp-resistant sweet corn hybrids grown in an area bounded by Mendota, IL, Ripon, WI, and Le Sueur, MN. Southern rust also was prevalent and frequently severe in the area. Isolates of P. sorghi from Rp-resistant corn were collected during September 1999 from Mendota, Rock Falls, and Dekalb, IL; Sun Prairie, Madison, and Ripon, WI; and Rochester, Stanton, and Le Sueur, MN. Ten two-leaved seedlings of one susceptible sweet corn hybrid and five Rp-resistant hybrids, including hybrids known to carry the gene Rp1D, were inoculated in greenhouse trials. Each location (collection) was a separate trial. Inocula were prepared from several uredinia of P. sorghi per location. One set of seedlings also was inoculated with P. polysora. Susceptible reactions (uredinia with urediniospores) were observed on all inoculated seedlings. Uredinia and urediniospores of P. sorghi and P. polysora from seedlings inoculated in the greenhouse were compared directly. All isolates of P. sorghi were confirmed based on 6- to 7-day latent periods, formation of uredinia on both leaf surfaces, and urediniospores that were mostly spherical, cinnamon colored, and moderately echinulate. This is the first widespread occurrence in North America of a biotype of P. sorghi that is virulent on Rp-resistant sweet corn. References: (1) S. H. Hulbert et al. Plant Dis. 75:1130, 1991. (2) J. K. Pataky et al. Purdue Univ. AES Bull. No. 758:99, 1997.


2020 ◽  
pp. 1202-1208
Author(s):  
Luan de Oliveira Nascimento ◽  
Josimar Batista Ferreira ◽  
Gleisson de Oliveira Nascimento ◽  
Vanderley Borges dos Santos ◽  
Clemeson Silva de Souza ◽  
...  

Increasing corn grain production without devastating new forest areas is a viable alternative to controlling deforestation. However, increasing plant density in the area may alter plant morphophysiological and productive traits. The objective of this study was to characterize relationships between physiological, morphological and yield traits of corn plants, as well as the cause, effect and relationship of the traits on grain yield. The experiment was carried out in randomized complete block design with four replications. The corn hybrids (2B655PW, AG7088PRO3 and P4285YHR) were grown with row spacing of 40 cm, 60 cm, 80 cm, 95 cm. The evaluated traits physiological were: net photosynthesis (PN), stomatal conductance (Gs), intercellular concentration of CO2 (Ci), leaf transpiration (E), water use efficiency (WUE) and carboxylation efficiency (CE). The morphological were: plant height (PH) and ear insertion height (EIH), stem diameter (SD), and leaf area (LA) and the productive traits were the total number of ear per hectare (NE), number of grains per ear (NGE), grain mass per ear (GME), 100 grain weight (100GW) and grain yield (GY). The characteristics of maize hybrids cultivated in environment with reduced spacing (40cm, 60cm, 80cm, 95cm) of the 2016/2017 crop were investigated through the multicollinearity path analysis. The physiological, morphological and productive traits are considered sources of variation of cause and effect of corn yield in reduced spaced. This traits are essential for observations in maize breeding programs to obtain high yielding varieties in reduced spacing. In conclusion, the physiological (PN, CE, WUE, Ci, Gs), morphological (EIH, SD, LA) and productive (NE, GME) traits provide gains in maize grain yield via indirect selection when the crop is subjected to 40 cm row spacing.


PLoS ONE ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. e0147418 ◽  
Author(s):  
Eunsoo Choe ◽  
Jenny Drnevich ◽  
Martin M. Williams

Weed Science ◽  
2006 ◽  
Vol 54 (5) ◽  
pp. 948-953 ◽  
Author(s):  
Martin M. Williams ◽  
John B. Masiunas

Field experiments were conducted to quantify functional relationships between giant ragweed density and sweet corn yield and ear traits. A rectangular hyperbolic model was fit to yield loss measured in terms of marketable ear mass, appropriate for the processing industry, and boxes of 50 marketable ears, relevant to the fresh market industry. The initial slope of the hyperbolic yield loss function (I), which describes the linear portion of yield loss as weed density (weeds per square meter) approaches zero, was 119 for loss of ear mass and 97 for loss of boxes of ears. Furthermore, 10 of 12 ear traits including green ear mass, husked ear mass, ear length, filled ear length, ear width, number of kernels per row, number of rows, kernel depth, kernel mass, and kernel moisture content were significantly affected by giant ragweed interference.


Sign in / Sign up

Export Citation Format

Share Document