scholarly journals Understanding variability in optimum plant density and recommendation domains for crowding stress tolerant processing sweet corn

PLoS ONE ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. e0228809 ◽  
Author(s):  
Daljeet S. Dhaliwal ◽  
Martin M. Williams
PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0223107 ◽  
Author(s):  
Daljeet S. Dhaliwal ◽  
Martin M. Williams

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253190
Author(s):  
Eunsoo Choe ◽  
Younhee Ko ◽  
Martin M. Williams

Crop tolerance to crowding stress, specifically plant population density, is an important target to improve productivity in processing sweet corn. Due to limited knowledge of biological mechanisms involved in crowding stress in sweet corn, a study was conducted to 1) investigate phenotypic and transcriptional response of sweet corn hybrids under different plant densties, 2) compare the crowding stress response mechanisms between hybrids and 3) identify candidate biological mechanisms involved in crowding stress response. Yield per hectare of a tolerant hybrid (DMC21-84) increased with plant density. Yield per hectare of a sensitive hybrid (GSS2259P) declined with plant density. Transcriptional analysis found 694, 537, 359 and 483 crowding stress differentially expressed genes (DEGs) for GSS2259P at the Fruit Farm and Vegetable Farm and for DMC21-84 at the Fruit Farm and Vegetable Farm, respectively. Strong transcriptional change due to hybrid was observed. Functional analyses of DEGs involved in crowding stress also revealed that protein folding and photosynthetic processes were common response mechanisms for both hybrids. However, DEGs related to starch biosynthetic, carbohydrate metabolism, and ABA related processes were significant only for DMC21-84, suggesting the genes have closer relationship to plant productivity under stress than other processes. These results collectively provide initial insight into potential crowding stress response mechanisms in sweet corn.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daljeet S. Dhaliwal ◽  
Elizabeth A. Ainsworth ◽  
Martin M. Williams

Over the last six decades, steady improvement in plant density tolerance (PDT) has been one of the largest contributors to genetic yield gain in field corn. While recent research indicates that PDT in modern sweet corn hybrids could be exploited to improve yield, historical changes in PDT in sweet corn are unknown. The objectives of this study were to: (a) quantify the extent to which PDT has changed since introduction of hybrid sweet corn and (b) determine the extent to which changes over time in PDT are associated with plant morpho-physiological and ear traits. An era panel was assembled by recreating 15 sugary1 sweet corn hybrids that were widely used at one time in the United States, representing hybrids since the 1930s. Era hybrids were evaluated in field experiments in a randomized complete block design with a split-plot arrangement of treatments, including hybrid as the main factor and density as the split-plot factor. Plant density treatments included “Low” plant density (9,900 plants/ha) free of crowding stress or “High” plant density (79,000 plants/ha) with crowding stress. On average, per-area marketable ear mass (Mt/ha) increased at a rate of 0.8 Mt/ha/decade at High densities, whereas per-plant yield (i.e., kg/plant) remained unchanged over time regardless of the density level. Crate yield, a fresh market metric, improved for modern hybrids. However, processing sweet corn yield metrics like fresh kernel mass and recovery (amount of kernel mass contributing to the fresh ear mass) showed modest or no improvement over time, respectively. Modern sweet corn hybrids tend to have fewer tillers and lower fresh shoot biomass, potentially allowing the use of higher plant density; however, plant architecture alone does not accurately predict PDT of individual hybrids.


Crop Science ◽  
2021 ◽  
Author(s):  
Martin Williams ◽  
Nicholas Hausman ◽  
Daljeet Dhaliwal ◽  
Tony Grift ◽  
Martin Bohn

2015 ◽  
Vol 107 (5) ◽  
pp. 1782-1788 ◽  
Author(s):  
Martin M. Williams
Keyword(s):  

2012 ◽  
pp. 105-110
Author(s):  
Ádám Lente

In the crop season of 2010 (rainy year), we studied the effect of three agrotechnical factors (sowing time, fertilization, plant density) and four different genotypes on the agronomical characteristics of sweet corn on chernozem soil in the Hajdúság. The experiments were carried out at the Látókép Experimental Farm of the University of Debrecen. In the experiment, two sowing dates (27 April, 26 May), six fertilization levels (control, N30+PK, N60+PK, N90+PK, N120+PK, N150+PK) and four genotypes (Jumbo, Enterprise, Prelude, Box-R) were used at two plant densities (45 thousand plants ha-1, 65 thousand plants ha-1). The amount of precipitation in the season of 2010 was 184 mm higher, while the average temperature was 0.8 oC higher in the studied months than the average of 30 years. Weather was more favourable for sweet maize at the first sowing date, if we consider the yields, however, if we evaluate the agronomical data and yield elements (number of cobs, cob length and diameter, the number of kernel rows, the number of kernels per row) it can be stated that the size of the fertile cobs was greater at the second sowing date due to the lower number of cobs. The largest number of fertile cobs was harvested in the case of the hybrid Enterprise (72367.9 ha-1) in the higher plant density treatment (65 thousand ha-1) at the fertilization level of N120+PK when the first sowing date was applied. The largest cobs were harvested from the hybrid Box-R (cob weight with husks: 516.7 g, number of kernels in one row: 45.7) at the lower plant density (45 thousand plants ha-1) in the second sowing date treatment. Cob diameter and the number of kernel rows were the highest for the hybrid Prelude.


2011 ◽  
pp. 105-108
Author(s):  
Ádám Lente

The effect of three agrotechnical factors (sowing time, fertilization, plant density) and two genotypes on the crop yield of sweet corn was examined on chernozem soil in the Hajdúság region in two different crop years. Compared to the 30-year average, the climate was dry and warm in 2009 and humid in 2010. The experiments were conducted at the Látókép Research Site of the University of Debrecen. In the experiments we applied two sowing times (end of April, end of May), six fertilization levels (control, N30+PK, N60+PK, N90+PK, N120+PK, N150+PK) and two crop density levels (45 thousand ha-1, 65 thousand ha-1). The hybrids we used were Jumbo and Enterprise. As regards the requirements of sweet corn production, the crop year of 2009 was dry and warm. The effect of moisture deficiency was more adverse on the crop yields with the second sowing time. On the contrary, the other examined year (2010) was significantly humid; the precipitation was 184 mm above the 30-year average and the temperature was average.In the dry and hot crop year, the best yields were obtained with the hybrid Jumbo (25677 kg-1) at 65 thousand ha-1 plant density level on the average of the fertilization levels. The crop yields of Enterprise were also the highest at high plant density level (24444 kg ha-1). With the second sowing time the highest yields were obtained at the higher plant density level (65 thousand ha-1) with both hybrids (Jumbo 18978 kg ha-1, Enterprise 18991 kg ha-1), which confirmed the good adaptation capability of these hybrids at high plant density level. In humid crop year with early sowing time the highest yielding hybrid was Enterprise (at 45 thousand ha-1 crop density level 20757 kg-1), at the same time, Jumbo was best yielding at the higher plant density level (18781 kg-1). With the second sowing time the highest crop yield was obtained with Enterprise again (20628 kg ha-1 at 65 thousand ha-1 plant density level). With this sowing time the average yields of Jumbo, was 18914 kg ha-1 respectively. We found that dry crop year and early sowing time provided the best conditions for sweet corn production; the highest yields were obtained under these circumstances, which might be the results of the outstanding water management of chernozem  soils.


2010 ◽  
pp. 77-81
Author(s):  
Ádám Lente

Three agrotechnical factors (sowing time, fertilization, plant density) and the effect of two different genotypes on the yields of sweet corn was studied, in the dry and warm crop-year of 2009 on a chernozem soil in the County of Hajdúság. The experiments were carried out on the Látókép Research Station of Debrecen University. The experiment involved two sowing times (21 of April and 19 of May), six fertilizer levels (control, N30+PK, N60+PK, N90+PK, N120+PK, N150+PK) and two genotypes (Jumbo, Enterprise). Four plant density levels, 45 thousand ha-1, 55 thousand ha-1, 65 thousand ha-1 and 75 thousand ha-1 were used. In the early sowing time the highest yield was obtained with 65 thousand ha-1 plant density level and N120+PK treatment of Jumbo (18169 kg ha-1), while the maximum yield of Enterprise was 17818 kg ha-1 with 75 thousand ha-1 plant density level and N90+PK dose. In case of the late sowing time both hybrids gave the highest yield with 75 thousand ha-1 plant density level and N30 +PKtreatment, with a crop yield of 13143 kg ha-1 (Jumbo) and 14324 kg ha-1, ( Enterprise). 


Sign in / Sign up

Export Citation Format

Share Document