Differential Competitive Ability of Winter Wheat Cultivars against Downy Brome

1994 ◽  
Vol 86 (4) ◽  
pp. 649-654 ◽  
Author(s):  
Robert E. Blackshaw
1991 ◽  
Vol 71 (2) ◽  
pp. 565-569 ◽  
Author(s):  
B. J. O'Connor ◽  
L. V. Gusta ◽  
S. P. Paquette

The freezing tolerance of downy (Bromus tectorum L.) and Japanese (Bromus japonicus) brome were compared to Norstar winter wheat (Triticum aestivum L.) collected from similar sites. From December to April of 1987 downy brome was either equal to or superior in freezing tolerance to the winter wheat. Of the three species, Japanese brome was slightly less hardy in December but was of equal freezing tolerance in March and April. There was no correlation between freezing tolerance and tissue water content or tissue dry weight in the three species. These two bromes may become a serious weed in winter wheat because their cold hardiness is either equal or superior to our hardiest winter wheat cultivars. Key words: Downy brome, Japanese brome, winter wheat, freezing tolerance


Weed Science ◽  
1991 ◽  
Vol 39 (2) ◽  
pp. 154-158 ◽  
Author(s):  
R. S. Balyan ◽  
R. K. Malik ◽  
R. S. Panwar ◽  
S. Singh

Field experiments were conducted during the winters of 1986–87 and 1987–88 at Haryana Agricultural University, Hisar, India to classify the ability of winter wheat cultivars to compete with wild oat. Wild oat reduced winter wheat grain yield by 17 to 62% depending upon cultivar. WH-147 and HD-2285 were the most competitive cultivars. Winter wheat dry matter accumulation and grain yield were negatively correlated with wild oat dry matter. A high number of tillers, particularly in HD-2009, WH-291, and S-308, did not always translate into grain yield advantage in wild oat-infested plots. Wheat height and dry matter accumulation per unit area during early crop growth were better characters than number of tillers for predicting the competitive ability of wheat cultivars to wild oat.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Min Fan ◽  
Fang Miao ◽  
Haiyan Jia ◽  
Genqiao Li ◽  
Carol Powers ◽  
...  

AbstractVernalization genes underlying dramatic differences in flowering time between spring wheat and winter wheat have been studied extensively, but little is known about genes that regulate subtler differences in flowering time among winter wheat cultivars, which account for approximately 75% of wheat grown worldwide. Here, we identify a gene encoding anO-linkedN-acetylglucosamine (O-GlcNAc) transferase (OGT) that differentiates heading date between winter wheat cultivars Duster and Billings. We clone thisTaOGT1gene from a quantitative trait locus (QTL) for heading date in a mapping population derived from these two bread wheat cultivars and analyzed in various environments. Transgenic complementation analysis shows that constitutive overexpression ofTaOGT1bfrom Billings accelerates the heading of transgenic Duster plants.TaOGT1 is able to transfer anO-GlcNAc group to wheat proteinTaGRP2. Our findings establish important roles forTaOGT1in winter wheat in adaptation to global warming in the future climate scenarios.


Sign in / Sign up

Export Citation Format

Share Document