Field Drying of TopCross High-Oil Corn Grain

2001 ◽  
Vol 93 (4) ◽  
pp. 797-801 ◽  
Author(s):  
Peter R. Thomison ◽  
Allen B. Geyer ◽  
Bert L. Bishop
Keyword(s):  
2003 ◽  
Vol 66 (4) ◽  
pp. 637-643 ◽  
Author(s):  
DINA E. SEVERNS ◽  
MICHAEL J. CLEMENTS ◽  
ROBERT J. LAMBERT ◽  
DONALD G. WHITE

High-oil corn (Zea mays L.) grain is a valuable component of feed for monogastric livestock. One method of increasing the concentration of oil in corn grain is the TopCross method. With TopCross, ears of a cytoplasmic male-sterile, normal-oil hybrid are pollinated by a male-fertile, high-oil synthetic hybrid. The concentration of oil in the resulting grain is increased because of xenia effects. Kernels of high-oil corn typically have a larger germ and a smaller endosperm than kernels of comparable normal hybrids. The growth of Aspergillus flavus Link:Fr within germ tissue has been reported to be more extensive than that on the whole corn kernel; therefore, the severity of Aspergillus ear rot could be more extensive and aflatoxin concentrations could be higher in high-oil grain produced by TopCross than in grain with a lower concentration of oil. The objective of this study was to compare Aspergillus ear rot severity levels and aflatoxin concentrations in the grains of hybrids crossed with high-oil or normal-oil pollinators. Fifteen hybrids were evaluated in 1998 and 1999 in Urbana, Ill. Primary ears were inoculated with A. flavus and evaluated for susceptibility to Aspergillus ear rot and aflatoxin production in grain. Concentrations of aflatoxin and oil in corn kernels were significantly higher for high-oil hybrids than for normal-oil hybrids; however, ear rot severity was unaffected by the type of pollinator. These results suggest that grain from high-oil hybrids is at greater risk for aflatoxin contamination during some growing seasons.


2020 ◽  
Vol 29 (5) ◽  
pp. 52-53
Author(s):  
A.V. Yaitskikh ◽  
◽  
O.I. Bundina ◽  
D.S. Stepanenko ◽  
◽  
...  

2020 ◽  
pp. 341-350
Author(s):  
Di Wang ◽  
Changbin He ◽  
Haiqing Tian ◽  
Liu Fei ◽  
Zhang Tao ◽  
...  

Low productivity and high electricity consumption are considered problems of the hammer mill, which is widely used in current feed production. In this paper, the mechanical properties of corn grain ground by a hammer mill were analysed, and the key factors affecting the performance of the hammer mill were determined. The single-factor experiment and three-factor, three-level quadratic regression orthogonal experiment were carried out with the spindle speed, corn grain moisture content and number of hammers as experimental factors and the productivity and electricity consumption per ton as evaluation indexes. The results showed that the order of influence on the productivity was spindle speed > corn grain moisture content > number of hammers and that the order of influence on the electricity consumption per ton was corn grain moisture content > spindle speed > number of hammers. The parameters were optimized based on the response surface method with the following results: the spindle speed was 4306 r/min, the corn grain moisture content was 10%, and the number of hammers was 24. The validation experiment was carried out with the optimal parameters’ combination. The productivity and electricity consumption per ton were 988.12 kg/h and 5.37 kW·h/t, respectively, which were consistent with the predicted results of the model.


1951 ◽  
Vol 43 (7) ◽  
pp. 305-311 ◽  
Author(s):  
Philip A. Miller ◽  
B. Brimhall

Crop Science ◽  
2004 ◽  
Vol 44 (3) ◽  
pp. 847 ◽  
Author(s):  
Weidong Liu ◽  
Matthijs Tollenaar ◽  
Greg Stewart ◽  
William Deen

2017 ◽  
Vol 1 (3) ◽  
pp. 367-381 ◽  
Author(s):  
D. B. Burken ◽  
B. L. Nuttelman ◽  
J. L. Gramkow ◽  
A. L. McGee ◽  
K. M. Sudbeck ◽  
...  

Abstract Corn plants were sampled over 2 consecutive years to assess the effects of corn hybrid maturity class, plant population, and harvest time on whole corn plant quality and yield in Nebraska. A finishing experiment evaluated the substitution of corn with corn silage in diets with corn modified distillers grains with solubles (MDGS). The first 2 harvest dates were at the mid- and late-silage harvest times whereas the final harvest was at the grain harvest stage of plant maturity. Whole plant yields increased as harvest time progressed (yr 1 quadratic P < 0.01; yr 2 linear P < 0.01). However, differences in TDN concentration in both years were quite minimal across harvest time, because grain percentage increased but residue NDF in-situ disappearance decreased as harvest time was delayed. In the finishing experiment, as corn silage inclusion increased from 15 to 55% (DM basis) by replacing dry rolled and high moisture corn grain with corn silage in diets containing 40% MDGS, DMI, ADG, and G:F linearly decreased (P ≤ 0.01), with the steers on the 15% corn silage treatment being 1.5%, 5.0%, and 7.7% more efficient than steers on treatments containing 30, 45, and 55% corn silage, respectively. Calculated dietary NEm and NEg decreased linearly as corn silage inclusion increased indicating that net energy values were greater for corn grain than for corn silage. In addition, dressing percentage decreased linearly (P < 0.01) as silage inclusion increased suggesting more fill as silage inclusion increases in diets. Cattle fed greater than 15% corn silage in finishing diets based on corn grain will gain slower and be slightly less efficient and likely require increased days to market at similar carcass fatness and size. When 30% silage was fed with 65% MDGS, DMI, and ADG were decreased (P < 0.01) compared to feeding 30% silage with 40% MDGS suggesting some benefit to including a proportion of corn in the diet. Conversely, when 45% silage was fed with 40% MDGS, ADG, and G:F were greater (P < 0.04) than when 45% silage was fed with just grain implying a greater energy value for MDGS than for corn grain. Substituting corn silage for corn grain in finishing diets decreased ADG and G:F which would increase days to finish to an equal carcass weight; however, in this experiment, increasing corn silage levels with MDGS present reduced carcass fat thickness without significantly decreasing marbling score.


Sign in / Sign up

Export Citation Format

Share Document