scholarly journals Invasion-induced root-fungal disruptions alter plant water and nitrogen economies

2020 ◽  
Author(s):  
Lalasia Bialic-Murphy ◽  
Nicholas Smith ◽  
Priya Voothuluru ◽  
Robert McElderry ◽  
Morgan Roche ◽  
...  

Abstract Despite widespread evidence that biological invasion influences the biotic and abiotic soil environments, the extent to which each of these pathways underpins the effects of invasion on native plant traits and performance is unknown. Leveraging a long-term (14-yr) manipulative field experiment, we show that an allelochemical-producing invader, Alliaria petiolata, affects native plants through biotic mechanisms, altering the soil fungal community composition, with no apparent shifts in soil nutrient availability. These changes in belowground soil fungal communities resulted in a high cost of resource uptake for native forest perennial herbs and a shift in functional traits linked to their carbon and nutrient economies. Furthermore, we illustrate that some species in the invaded community compensate for high nutrient costs by reducing nutrient uptake and maintaining photosynthesis by expending more water. This demonstrates a trade-off in trait investment that increases nutrient use efficiency as nutrient costs increase. Our results show that invasion-induced disruptions in the soil fungal community belowground can cascade to affect aboveground plant communities via shifts in physiological traits needed to maintain plant water and nutrient economies. These complex above-belowground linkages suggest that plant invasions should be evaluated at the system-level to fully understand and predict their impact on native plants and communities.

Author(s):  
Meredith Root-Bernstein ◽  
Cesar Muñoz ◽  
Juan Armesto

The Intermediate Disturbance Hypothesis is widely considered to be wrong but is rarely tested against alternative hypotheses. It predicts that soil disturbances and herbivory have identical impacts on species richness via identical mechanisms (reduction in biomass and in competition). An alternative hypothesis is that the specific traits of disturbance agents (small mammals) and plants differentially affects richness or abundance of different plant groups. We tested these hypotheses on a degu (Octodon degus) colony in central Chile. We ask whether native and non-native forbs respond differently to degu bioturbation on runways vs. herbivory on grazing lawns. We ask whether this can explain the increase in non-native plants on degu colonies. We found that biopedturbation did not explain the locations of non-native plants. We did not find direct evidence of grazing increasing non-native herbs either, but a grazing effect appears to be mediated by grass, which is the dominant cover. Further, we provide supplementary evidence to support our interpretation that a key mechanism of non-native spread is the formation of dry soil conditions on grazing lawns. Thus ecosystem engineering (alteration of soil qualities) may be an outcome of disturbances, which each interact with specific plant traits, to create the observed pattern of non-native spread in the colony. Based on these results we propose to extend Jentsch & White’s (2019) concept of combined pulse/ disturbance events to the long-term process duality of ecosystem engineering/ disturbance.


2020 ◽  
Vol 469 ◽  
pp. 118199
Author(s):  
Daniel Oliach ◽  
Carlos Colinas ◽  
Carles Castaño ◽  
Christine R. Fischer ◽  
Francesc Bolaño ◽  
...  

2021 ◽  
Vol 193 (7) ◽  
Author(s):  
Kaining Sun ◽  
Longyun Fu ◽  
Yang Song ◽  
Liang Yuan ◽  
Haoran Zhang ◽  
...  

2021 ◽  
Author(s):  
Jian Li ◽  
Zhanrui Leng ◽  
Yueming Wu ◽  
Yizhou Du ◽  
Zhicong Dai ◽  
...  

Abstract Global changes have altered the distribution pattern of the plant communities, including invasive species. Anthropogenic contamination may reduce native plant resistance to the invasive species. Thus, the focus of the current review is on the contaminant biogeochemical behavior among native plants, invasive species and the soil within the plant-soil ecosystem to improve our understanding of the interactions between invasive plants and environmental stressors. Our studies together with synthesis of the literature showed that a) the impacts of invasive species on environmental stress were heterogeneous, b) the size of the impact was variable, and c) the influence types were multidirectional even within the same impact type. However, invasive plants showed self-protective mechanisms when exposed to heavy metals (HMs) and provided either positive or negative influence on the bioavailability and toxicity of HMs. On the other hand, HMs may favor plant invasion due to the widespread higher tolerance of invasive plants to HMS together with the “escape behavior” of native plants when exposed to toxic HM pollution. However, there has been no consensus on whether elemental compositions of invasive plants are different from the natives in the polluted regions. A quantitative research comparing plant, litter and soil contaminant contents between native plants and the invaders in a global context is an indispensable research focus in the future.


2017 ◽  
Vol 67 (10) ◽  
pp. 679-689 ◽  
Author(s):  
Fei Xu ◽  
Tijiu Cai ◽  
Xue Yang ◽  
Wenzhi Sui

2015 ◽  
Vol 90 ◽  
pp. 41-48 ◽  
Author(s):  
Yan Ma ◽  
Terry Gentry ◽  
Ping Hu ◽  
Elizabeth Pierson ◽  
Mengmeng Gu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document