Heavy Metal Concentrations in Earthworms From Soil Amended with Sewage Sludge

1982 ◽  
Vol 11 (3) ◽  
pp. 381-385 ◽  
Author(s):  
W. Nelson Beyer ◽  
Rufus L. Chaney ◽  
Bernard M. Mulhern
2011 ◽  
Vol 49 (No. 9) ◽  
pp. 402-409 ◽  
Author(s):  
K. Gondek ◽  
B. Filipek-Mazur

Sewage sludge application in agriculture is the simplest method of its management. Its content of organic and inorganic toxic components is a barrier to such management. Particular attention should be paid to the content of heavy metals whose presence in sewage sludge and later in soil poses hazard for plants, animals and people. The investigations aimed to determine the effect of vermicomposts obtained from tannery sludge on development of the root system and biomass of shoots as well as heavy metal concentrations in these organs. In the first year after the vermicomposts application their effect on the maize biomass increase was equal to the farmyard manure treatment but significantly worse than the mineral fertilization. The consecutive fertilizer effect of vermicomposts of tannery sludge ted on the increase in biomass of the shoots and roots of winter rape, sunflower and oats was comparable with the farmyard manure effect but notably better than the mineral fertilization. Heavy metal concentrations in individual plants were diversified; in the plants from vermicompost treatment they were as a rule lower than in the plants from mineral or farmyard manure treatment. Absorbed heavy metals accumulated primarily in the root systems, whereas the extremely high chromium content in vermicomposts did not cause its excessive accumulation in the cultivated plants.


2017 ◽  
Vol 24 (18) ◽  
pp. 15634-15644 ◽  
Author(s):  
Fatemeh Shahbazi ◽  
Somayeh Ghasemi ◽  
Hamid Sodaiezadeh ◽  
Kobra Ayaseh ◽  
Rasool Zamani-Ahmadmahmoodi

2005 ◽  
Vol 45 (4) ◽  
pp. 445 ◽  
Author(s):  
J. L. Cooper

Two forms of biosolids, with and without lime, were applied to acid soils at 2 sites growing wheat and triticale in central New South Wales. The forms of biosolids used were dewatered sewage sludge cake, and N-Viro Soil which is a lime-amended sewage sludge. Dewatered sewage sludge cake was applied at rates of 0, 6, 12 and 24 dry Mg/ha, and N-Viro soil at 0, 1.5, 3.0 and 4.5 dry Mg/ha. The soil was sampled and analysed at 2 points in time to determine the effect of the biosolids on heavy metal concentrations. Vegetative plant material and grain were also analysed for heavy metal and organo-chlorine pesticide levels. Zinc and copper concentrations increased significantly with the addition of biosolids, especially with the highest rates of dewatered sewage sludge cake. However, all soil heavy metals were below the maximum allowable soil contaminant concentrations set by Environment Protection Authority, NSW. Cereal species, the addition of lime, and biosolids each affected heavy metal concentrations in plant material, but the responses differed between sites. Also, the changes in heavy metal concentrations in plant material were smaller and less consistent than the changes in soil heavy metal concentrations. The maximum heavy metal concentrations in grain were all below the maximum permitted concentrations of Food Standards Australia New Zealand. There were no detectable changes in the levels of organo-chlorine pesticides in the grain.


Sign in / Sign up

Export Citation Format

Share Document