The effect of biosolids on cereals in central New South Wales, Australia. 2. Soil levels and plant uptake of heavy metals and pesticides

2005 ◽  
Vol 45 (4) ◽  
pp. 445 ◽  
Author(s):  
J. L. Cooper

Two forms of biosolids, with and without lime, were applied to acid soils at 2 sites growing wheat and triticale in central New South Wales. The forms of biosolids used were dewatered sewage sludge cake, and N-Viro Soil which is a lime-amended sewage sludge. Dewatered sewage sludge cake was applied at rates of 0, 6, 12 and 24 dry Mg/ha, and N-Viro soil at 0, 1.5, 3.0 and 4.5 dry Mg/ha. The soil was sampled and analysed at 2 points in time to determine the effect of the biosolids on heavy metal concentrations. Vegetative plant material and grain were also analysed for heavy metal and organo-chlorine pesticide levels. Zinc and copper concentrations increased significantly with the addition of biosolids, especially with the highest rates of dewatered sewage sludge cake. However, all soil heavy metals were below the maximum allowable soil contaminant concentrations set by Environment Protection Authority, NSW. Cereal species, the addition of lime, and biosolids each affected heavy metal concentrations in plant material, but the responses differed between sites. Also, the changes in heavy metal concentrations in plant material were smaller and less consistent than the changes in soil heavy metal concentrations. The maximum heavy metal concentrations in grain were all below the maximum permitted concentrations of Food Standards Australia New Zealand. There were no detectable changes in the levels of organo-chlorine pesticides in the grain.


2005 ◽  
Vol 45 (4) ◽  
pp. 435 ◽  
Author(s):  
J. L. Cooper

Two forms of biosolids, with and without lime, were applied to acid soils at 2 sites in central New South Wales. Wheat and triticale were then grown on these sites to determine the effect of biosolids on crop growth and yield. The forms of biosolids used were dewatered sewage sludge cake, and N-Viro Soil which is a lime amended sewage sludge. Dewatered sewage sludge cake was applied at rates of 0, 6, 12 and 24 dry Mg/ha, and N-Viro soil at 0, 1.5, 3.0 and 4.5 dry Mg/ha. Biosolids produced grain yield increases of over 50% at both sites, with the largest yield increases at the highest rate of dewatered sewage sludge. Continued cropping at 1 of the sites showed that significant yield increases were still obtained 3 years after the initial application. The addition of lime and N-Viro Soil raised soil pH, and produced small but long lasting yield increases. However, the main benefit of biosolids seems to have come from the nutrients they supplied rather than changes in soil pH.



2011 ◽  
Vol 49 (No. 9) ◽  
pp. 402-409 ◽  
Author(s):  
K. Gondek ◽  
B. Filipek-Mazur

Sewage sludge application in agriculture is the simplest method of its management. Its content of organic and inorganic toxic components is a barrier to such management. Particular attention should be paid to the content of heavy metals whose presence in sewage sludge and later in soil poses hazard for plants, animals and people. The investigations aimed to determine the effect of vermicomposts obtained from tannery sludge on development of the root system and biomass of shoots as well as heavy metal concentrations in these organs. In the first year after the vermicomposts application their effect on the maize biomass increase was equal to the farmyard manure treatment but significantly worse than the mineral fertilization. The consecutive fertilizer effect of vermicomposts of tannery sludge ted on the increase in biomass of the shoots and roots of winter rape, sunflower and oats was comparable with the farmyard manure effect but notably better than the mineral fertilization. Heavy metal concentrations in individual plants were diversified; in the plants from vermicompost treatment they were as a rule lower than in the plants from mineral or farmyard manure treatment. Absorbed heavy metals accumulated primarily in the root systems, whereas the extremely high chromium content in vermicomposts did not cause its excessive accumulation in the cultivated plants.



Soil Research ◽  
1997 ◽  
Vol 35 (5) ◽  
pp. 1165 ◽  
Author(s):  
Bernd G. Lottermoser

Total heavy metal concentrations [cobalt (Co), chromium (Cr), copper(Cu), iron (Fe), mangnese (Mn), nickel (Ni), lead (Pb), and zinc (Zn)]were determined in surface soil samples from Port Macquarie, New South Wales,Australia. Composite topsoil samples (0–10 cm depth) had mean values(per kg) of 13 mg Co, 1020 mg Cr, 59 mg Cu, 136·7 g Fe, 719 mg Mn, 149mg Ni, 20 mg Pb, and 47 mg Zn. The topsoils were generally characterised by alow pH (3·8–5·2) and a mineralogy dominated by haematite,magnetite, quartz, and kaolinite. Chromium was predominantly present in thetopsoils as Cr3+ in microcrystalline chromite(FeCr2O4) and, to a lesser degree,in kaolinite and haematite. Differences in Cr soil concentrations with depthwere due to variations in the relative abundance of the various soilcomponents, rather than Cr3+ mobility within the soilprofile. The elevated heavy metal concentrations are the result of soildevelopment over metal-rich bedrock (serpentinite matrix melange) andassociated enrichment of relatively immobile elements (Cr, Fe, Ni) in theresidual soil profile. The ANZECC and NH&MRC (Australian and New ZealandEnvironment and Conservation Council and National Health & MedicalResearch Council) environmental investigation limits were exceeded for100% of the sample sites for Cr, 47% for Cu, 61% for Mn,and 58% for Ni.



1987 ◽  
Vol 38 (5) ◽  
pp. 591 ◽  
Author(s):  
GE Batley

The distribution and bioavailability of heavy metals in waters and sediments from Lake Macquarie (N.S.W.) have been examined. Elevated concentrations of zinc, lead, cadmium and copper detected in surface sediments and waters from the northern end of the lake are attributable to discharges from a lead-zinc smelter on Cockle Creek. The majority of the metals are in bioavailable forms and are shown to be accumulated in seagrasses, seaweeds and bivalves. Calculations indicate that, at the current rates of discharge, the concentrations of bioavailable metals in newly-deposited sediments should not be deleterious. Elutriate tests showed that there will be no significant mobilization of metals during dredging operations to remove the contaminated sediments.



2002 ◽  
Vol 11 (4) ◽  
pp. 285-300 ◽  
Author(s):  
V. MÄNTYLAHTI ◽  
P. LAAKSO

Increasing concentrations of arsenic and heavy metals in agricultural soils are becoming a growing problem in industrialized countries. These harmful elements represent the basis of a range of problems in the food chain, and are a potential hazard for animal and human health. It is therefore important to gauge their absolute and relative concentrations in soils that are used for crop production. In this study the arsenic and heavy metal concentrations in 274 mineral soil samples and 38 organogenic soil samples taken from South Savo province in 2000 were determined using the aqua regia extraction technique. The soil samples were collected from 23 farms.The elements analyzed were arsenic, cadmium, chromium, copper, mercury, nickel, lead and zinc. The median concentrations in the mineral soils were:As 2.90 mg kg –1, Cd 0.084 mg kg –1, Cr 17.0 mg kg –1, Cu 13.0 mg kg –1, Hg 0.060 mg kg –1, Ni 5.4 mg kg –1, Pb 7.7 mg kg –1, Zn 36.5 mg kg –1. The corresponding values in the organogenic soils were:As 2.80 mg kg –1, Cd 0.265 mg kg –1, Cr 15.0 mg kg –1, Cu 29.0 mg kg –1, Hg 0.200 mg kg –1, Ni 5.9 mg kg –1, Pb 11.0 mg kg –1, Zn 25.5 mg kg –1. The results indicated that cadmium and mercury concentrations in the mineral and organogenic soils differed. Some of the arsenic, cadmium and mercury concentrations exceeded the normative values but did not exceed limit values. Most of the agricultural fields in South Savo province contained only small amounts of arsenic and heavy metals and could be classified as “Clean Soil”. A draft for the target values of arsenic and heavy metal concentrations in “Clean Soil” is presented.;



2020 ◽  
Vol 10 (27) ◽  
pp. 200911
Author(s):  
Aung Zaw Tun ◽  
Pokkate Wongsasuluk ◽  
Wattasit Siriwong

Background. Artisanal and small-scale mining activities are widely practiced globally. Concentrations of heavy metals associated with gold, such as copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb) can increase in the environment as a result of mining activities, leading to environmental pollution and pose toxicity risks to humans and animals. Objectives. The aim of the present study was to investigate soil concentrations of toxic heavy metals in placer small-scale gold mining operations in Myanmar. Methods. Soil samples were collected from three placer small-scale gold mining sites: Site A located in the Hmawbon public protected forest, Site B and Site C, situated in the Nant-Kyin reserved forest around Nar Nant Htun village. At each site, soil samples were collected from four gold mining stages (ore processing, sluicing, panning, and amalgamation). Atomic absorption spectroscopy was utilized to examine the concentrations of As, Cd, Pb, and Hg. Results. The highest heavy metal concentrations were generally found in the amalgamation stages across all the gold mining sites. Across the three mining sites, the maximum heavy metal concentrations in the amalgamation stage were 22.170 mg.kg−1 for As, 3.070 mg.kg−1 for Cd, 77.440 mg.kg−1 for Hg, and 210.000 mg.kg−1 for Pb. Conclusions. The present study examined the concentrations of As, Cd, Hg and Pb in the soil of several small-scale gold mining sites in Banmauk Township, Myanmar. The results demonstrated the presence of high concentrations of heavy metals in the soil of the gold mining sites. Miners in this area work without proper personal protective equipment, and frequent exposure to heavy metals in the soil may cause adverse health effects. The present study provides baseline data for future risk assessment studies of heavy metal contamination in gold mines. Competing Interests. The authors declare no competing financial interests



2016 ◽  
Vol 23 (2) ◽  
pp. 271-283 ◽  
Author(s):  
Thomas Spanos ◽  
Antoaneta Ene ◽  
Chrysoula Styliani Patronidou ◽  
Christina Xatzixristou

AbstractThe aim of this study was to evaluate the temporal variations of selected heavy metals level in anaerobic fermented and dewatered sewage sludge. Sewage sludge samples were collected in different seasons and years from three municipal wastewater treatment plants (WWTPs) located in Northern Greece, in Kavala (Kavala and Palio localities) and Drama (Drama locality) Prefectures. An investigation of the potential of sludge utilization in agriculture was performed, based on the comparison of average total heavy metal concentrations and of chromium species (hexavalent, trivalent) concentrations with the allowed values according to the Council Directive 86/278/EEC and Greek national legislation (Joint Cabinet Decision 80568/4225/91) guidelines. In this regard, all the investigated heavy metals (Cd, Cr, Cu, Ni, Pb, Zn, Hg) and chromium species Cr(VI) and Cr(III) have average concentrations (dry matter weight) well below the legislated thresholds for soil application, as following: 2.12 mg kg−1Cd; 103.7 mg kg−1Cr; 136.4 mg kg−1Cu; < 0.2 mg kg−1Hg; 29.1 mg kg−1Ni; 62.0 mg kg−1Pb; 1253.2 mg kg−1Zn; 1.56 mg kg−1Cr(VI) and 115.7 mg kg−1Cr(III). Values of relative standard deviation (RSD) indicate a low or moderate temporal variability for domestic-related metals Zn (10.3-14.7%), Pb (27.9-44.5%) and Cu (33.5-34.2%), and high variability for the metals of mixed origin or predominantly resulted from commercial activities, such as Ni (42.4-50.7%), Cd (44.3-85.5%) and Cr (58.2-102.0%). For some elements the seasonal occurrence pattern is the same for Kavala and Palio sludge, as following: a) Cd and Cr: spring>summer>winter; b) Cu, Ni and Pb: winter>spring>summer. On average, in summer months (dry season) metal concentrations are lower than in spring and winter (wet seasons), with the exception of Zn. For Kavala and Palio the results demonstrate that the increased number of inhabitants (almost doubled) in summer time due to tourism does not influence the metal levels in sludge. Comparing the results obtained for similar spring-summer-winter sequences in 2007 and 2010/11 and for the spring season in 2007, 2008 and 2010, it can be noticed that, in general, the average heavy metal contents show an increasing tendency towards the last year. In all the measurement periods, the Palio sludge had the highest metal contents and Kavala sludge the lowest, leading to the conclusion that the WWTP operating process rather than population has a significant effect upon the heavy metal content of sludge. Cr(VI)/Cr(total) concentration ratios are higher for Kavala sludge in the majority of sampling campaigns, followed by Drama and Palio sludge. The metals which present moderate to strong positive correlation have common origin, which could be a domestic-commercial mixed source.



Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1840 ◽  
Author(s):  
Lei Huang ◽  
Hongwei Fang ◽  
Ke Ni ◽  
Wenjun Yang ◽  
Weihua Zhao ◽  
...  

In this study, surface sediment samples were taken from the Three Gorges Reservoir (TGR) in June 2015 to estimate the spatial distribution and potential risk of Cu, Zn, Cd, Pb, Cr, and Ni (34 sites from the mainstream and 9 sites from the major tributaries), and correlations with environmental variables were analyzed (e.g., median sediment size, water depth, turbidity, dissolved oxygen of the bottom water samples, and total organic carbon, total nitrogen, and total phosphorus of the surface sediment samples). Results show that the heavy metal concentrations in the sediments have increased over the last few decades, especially for Cd and Pb; and the sites in the downstream area, e.g., Badong (BD) and Wushan (WS), have had greater increments of heavy metal concentrations. The sampling sites from S6 to S12-WS are identified as hot spots for heavy metal distribution and have relatively high heavy metal concentrations, and there are also high values for the sites affected by urban cities (e.g., the concentrations of Zn, Cd, Cr and Ni for the site S12-WS). Overall, the heavy metal concentrations increased slightly along the mainstream due to pollutants discharged along the Yangtze River and sediment sorting in the reservoir, and the values in the mainstream were greater than those in the tributaries. Meanwhile, the heavy metal concentrations were generally positively correlated with water depth (especially for Ni), while negatively correlated with dissolved oxygen, turbidity, and median sediment size. These environmental variables have a great impact on the partition of heavy metals between the sediment and overlying water. According to the risk assessment, the heavy metals in the surface sediments of TGR give a low to moderate level of pollution.



2020 ◽  
Vol 49 (1) ◽  
pp. 68-80
Author(s):  
Tamara Zalewska ◽  
Paulina Brzeska-Roszczyk ◽  
Beata Danowska ◽  
Mariusz Pełechaty

AbstractThe paper presents the first data on the concentrations of heavy metals (Cd, Pb, Zn, Cu, Ni, Cr, Mn) and 137Cs and their contamination ratios (CR) in the most abundant species of macrophytes in the Vistula Lagoon. No significant differences in the concentrations of heavy metals and 137Cs between macrophyte taxa or the influence of rivers flowing into the Vistula Lagoon on heavy metal concentrations in the area were found. The concentrations of heavy metals in macrophyte taxa varied in the following ranges: Cd – 0.1–0.7 mg kg−1 d.w.; Pb – 0.5–5.0 mg kg-1 d.w.; Zn – 29–390 mg kg-1 d.w.; Cu – 2.5–8.3 mg kg-1 d.w.; Ni – 0.4–6.8 mg kg−1 d.w.; Cr – 0.5–2.8 mg kg−1 d.w.; Mn – 380–8500 mg kg−1 d.w. Since the 1990s, a decline or stable state of heavy metal concentrations in bottom sediments has been observed, reflecting changes in the environment of the Vistula Lagoon. The linear sedimentation rate in the Vistula Lagoon was 3.3 mm y−1. The results presented in the paper can serve as a baseline for assessing changes in the environmental status of the Vistula Lagoon, which may occur as a result of future investments, including building a new navigable canal through the Vistula Spit.



2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Muyun Sun ◽  
Kaiyuan He ◽  
Shi Shu

Despite the extensive attention paid to the transport of heavy metals in sludge landfills, the processes of transporting these pollutants from a landfill to the underground environment are quite complicated and subject to significant uncertainty. In this study, the transport of typical heavy metal pollutants in a sludge landfill through saturated and unsaturated soil zones during rainfall was investigated via numerical modeling. The objectives of the study are to evaluate the heavy metal pollution risk from a sludge landfill under rainfall infiltration conditions and to propose several management suggestions. The results indicate that, during rainfall, heavy metal concentrations at the top of the unsaturated sludge layer decrease rapidly, but they decrease more gradually at the bottom of the layer. The maximum concentration appears in vertical distribution and decreases gradually through the saturated zone. Nickel is the first heavy metal pollutant to break through the low-permeability natural silt barrier. The transport parameters not only influence the simulated time for heavy metal pollutants to break through the silt layer and cause underground environmental pollution but also affect the extent to which the heavy metal pollutants in pore water exceed the guidelines. On the basis of these results, for dredged sludge with heavy metal concentrations significantly exceeding the standard, the concentration of heavy metals in pore water should be reduced before the sludge is landfilled, and a covering layer should be established on the sludge surface to control rainfall infiltration.



Sign in / Sign up

Export Citation Format

Share Document