Grain Filling and Field Drying of a Set of Maize Hybrids Released From 1930 to 1982 1

Crop Science ◽  
1985 ◽  
Vol 25 (5) ◽  
pp. 856-860 ◽  
Author(s):  
A. J. Cavalieri ◽  
O. S. Smith
Keyword(s):  
2015 ◽  
Author(s):  
Nav Raj Adhikari ◽  
Surya Kant Ghimire ◽  
Shrawan Kumar Sah ◽  
Keshab Babu Koirala

National maize productivity is very low in Nepal. To increase its productivity, hybrid maize breeding and their cultivation are indispensible. For it, fifteen newly bred single cross hybrids of yellow maize were examined to select superior high GYHs (grain yielding hybrids) from the standpoint grain yielding potentiality. In addition, dynamics of chl, N conc and red light absorbance-transmittance (RAT) have also examined from the standpoint of chl, N conc and RAT measure and their effects on grain yield (GY). For it, a trial of RCBD experiment was conducted in open field in winter in subtropical region in Nepal. Seeds were sown on October 3, 2012 plot in two row plot area of 1.4 x 3.0 m2. After anthesis, observations of chl and N conc implying RAT (red light absorbance-transmittance) SPAD (Soil Plant Analysis and Development) measures were taken from the topmost ear (e0 or E0) and third (e3 or E3) leaf above the e0 leaf in ten days interval during entire grain filling (GF). SPAD measures were transformed to total chl and N conc. E0 leaf has been found more grain yield determining than e3 leaf and terminal GF has been found more determining than early GF from the standpoint of correlation coefficients (r ) of GYs with chl, N conc and SPAD measure. From pooled variance analysis; SPAD and chl conc were not significant different in the two leaves and among the hybrids (Hybrids x Leaves x Ages). But, the SPAD and chl conc were significant different among the two leaves and ages (Leaves x Ages) irrespective of the hybrids. Different to the SPAD and chl conc, N conc was significant different in the leaves among the hybrids with respect to ages of the plants among the fifteen hybrids (Hybrids x Leaves x Ages). Thirteen top high GYHs 8, 12, 11, 13, 5, 6, 10, 1, 7, 14, 2, 9 and 15 were non-significant different from the standpoint of GY. The SPAD measures were in the non-significant range of 51-55 in e0 leaf in the duration from 95 to 125 d among the fifteen hybrids (FHs). Among the top four high GYHs 8, 12, 11 and 13; hybrid 11 lost chl and N from e0 leaf significantly on 135th d relative to the most of the hybrids. It means that the hybrid 11 could efficiently degrade N containing soluble protein and chl even on e0 leaf relatively. Top listed five high GYHs 8, 12, 11, 5 and 6 (except 13) constantly maintained chl and N conc implying SPAD on the e0 leaf up to the 135th d. In addition, it implies that these five hybrids sent newly up-taken N to kernels without degradation of the proteins and chl from the e0 leaf till the age of 135 d. High GYH 8 had degraded soluble proteins and enzymes and chl conc on e3 leaf and mobilized the degraded N to the kernels more efficiently from the e3 leaf. It is not necessary that maize hybrids must constantly maintain soluble proteins and chl conc during most of early to mid GF for high GY. Instead, diagnostic decline of the soluble protein and chl conc during early to mid GF also accelerate GF phenomena.


2015 ◽  
Author(s):  
Nav Raj Adhikari ◽  
Surya Kant Ghimire ◽  
Shrawan Kumar Sah ◽  
Keshab Babu Koirala

National maize productivity is very low in Nepal. To increase its productivity, hybrid maize breeding and their cultivation are indispensible. For it, fifteen newly bred single cross hybrids of yellow maize were examined to select superior high GYHs (grain yielding hybrids) from the standpoint grain yielding potentiality. In addition, dynamics of chl, N conc and red light absorbance-transmittance (RAT) have also examined from the standpoint of chl, N conc and RAT measure and their effects on grain yield (GY). For it, a trial of RCBD experiment was conducted in open field in winter in subtropical region in Nepal. Seeds were sown on October 3, 2012 plot in two row plot area of 1.4 x 3.0 m2. After anthesis, observations of chl and N conc implying RAT (red light absorbance-transmittance) SPAD (Soil Plant Analysis and Development) measures were taken from the topmost ear (e0 or E0) and third (e3 or E3) leaf above the e0 leaf in ten days interval during entire grain filling (GF). SPAD measures were transformed to total chl and N conc. E0 leaf has been found more grain yield determining than e3 leaf and terminal GF has been found more determining than early GF from the standpoint of correlation coefficients (r ) of GYs with chl, N conc and SPAD measure. From pooled variance analysis; SPAD and chl conc were not significant different in the two leaves and among the hybrids (Hybrids x Leaves x Ages). But, the SPAD and chl conc were significant different among the two leaves and ages (Leaves x Ages) irrespective of the hybrids. Different to the SPAD and chl conc, N conc was significant different in the leaves among the hybrids with respect to ages of the plants among the fifteen hybrids (Hybrids x Leaves x Ages). Thirteen top high GYHs 8, 12, 11, 13, 5, 6, 10, 1, 7, 14, 2, 9 and 15 were non-significant different from the standpoint of GY. The SPAD measures were in the non-significant range of 51-55 in e0 leaf in the duration from 95 to 125 d among the fifteen hybrids (FHs). Among the top four high GYHs 8, 12, 11 and 13; hybrid 11 lost chl and N from e0 leaf significantly on 135th d relative to the most of the hybrids. It means that the hybrid 11 could efficiently degrade N containing soluble protein and chl even on e0 leaf relatively. Top listed five high GYHs 8, 12, 11, 5 and 6 (except 13) constantly maintained chl and N conc implying SPAD on the e0 leaf up to the 135th d. In addition, it implies that these five hybrids sent newly up-taken N to kernels without degradation of the proteins and chl from the e0 leaf till the age of 135 d. High GYH 8 had degraded soluble proteins and enzymes and chl conc on e3 leaf and mobilized the degraded N to the kernels more efficiently from the e3 leaf. It is not necessary that maize hybrids must constantly maintain soluble proteins and chl conc during most of early to mid GF for high GY. Instead, diagnostic decline of the soluble protein and chl conc during early to mid GF also accelerate GF phenomena.


2015 ◽  
Author(s):  
Nav Raj Adhikari ◽  
Surya Kant Ghimire ◽  
Shrawan Kumar Sah ◽  
Keshab Babu Koirala

National maize productivity is very low in Nepal. Increase of the productivity is only possible through growing high grain yielding single cross hybrid maize cultivar. So, development and evaluation of maize hybrids are principal steps to select high grain yielding and superior hybrid for cultivar. For it, fifteen newly bred single cross hybrids of yellow maize were examined from the standpoint of chlorophyll (chl) dynamics and their effects on grain yield. For it, a trial of RCBD experiment was conducted in open field in winter in subtropical region in Nepal. Seeds were sown on October 3, 2012 plot in two row plot area of 1.4 x 3.0 m2. After anthesis, chl and N concentration (conc) implying RAT (red light absorbance-transmittance) SPAD measure were taken from the topmost ear (e0) and third (e3) leaf above the e0 in ten days interval during grain filling. SPAD measures were transformed to total chl and N conc. E0 leaf has been found more grain yield determining than e3 leaf and terminal grain filling duration has been found more determining than early grain filling from the standpoint of correlation of grain yield with chl, N conc and SPAD measure. From pooled variance analysis; SPAD and chl conc were not significant different in different leaves and among the hybrids (Hybrids x Leaves x Ages). But, the SPAD and chl conc were significant different among the two leaves and ages (Leaves x Ages) irrespective of the hybrids. Different to the SPAD and chl conc, N conc was significant different in the leaves among the hybrids with respect to ages of the plants among the hybrids (Hybrids x Leaves x Ages). Thirteen top high grain yielding hybrids (HGYHs) 8, 12, 11, 13, 5, 6, 10, 1, 7, 14, 2, 9 and 15 were non-significant different from the standpoint of grain yield. The SPADs were in the non-significant range of 51-55 in e0 leaf in the duration from 95 to 125 d among the fifteen hybrids. Among the top four HGYHs 8, 12, 11 and 13; hybrid 11 lost chl and N from e0 leaf significantly on 135th d relative to the most of the hybrids. It means that the hybrid 11 could efficiently degrade N containing soluble protein and chl even from e0 leaf relatively. Top five HGYHS 8, 12, 11, 5 and 6 except 13 among the top listed ten hybrids constantly maintained chl and N conc implying SPAD in the e0 leaf up to the 135th d. In addition, it implies that these five hybrids sent newly up-taken N to kernels without degradation of the proteins and chl from the e0 leaf till the age of 135 d. HGYH 8 had degraded soluble proteins and enzymes and chl in e3 leaf and mobilized the degraded N to the kernels more efficiently from the e3 leaf. It is not necessary that maize hybrids must constantly maintain soluble proteins and chl conc during most of early to mid-grain filling duration for high grain yield. Instead, efficient reasonable decline of the soluble protein and chl conc during early to mid-grain filling also accelerate grain filling phenomena.


2009 ◽  
Vol 89 (6) ◽  
pp. 1041-1045 ◽  
Author(s):  
W Jiang ◽  
K Wang ◽  
G Jiang ◽  
Q Wu ◽  
J Zhang ◽  
...  

We conducted an experiment with two maize hybrids (Zea mays L.) to examine the effect of interplant root competition on root growth and to evaluate the impact to total plant performance. Two maize hybrids (Jinhai 5 and Denghai 3719) were grown either with no root competition in their own plot (owners) or as individuals sharing twice the space and nutrients (sharers). Plants were sampled every other week after pollination to track changes in root and shoot biomass. The carbohydrate allocation was smaller in the roots of sharers compared with owners at the pro-phase of grain filling and shoot accumulation was slightly accelerated during this period. However, at the lag phase, the accumulation rate in the shoots of individual plants was distinctly lower than in owners, as a result of earlier root senescence. Overall, shoot mass was reduced by 8% in sharers of both hybrids, while they showed a similar root to shoot ratio compared with the owners. Although the “sharing” treatment was confounded by larger soil spaces, the effects of larger soil volume and interplant root competition were different, and demonstrate that interplant root competition has an inhibitory effect on roots. Maize plants displayed an overcrowding effect (or an escape strategy) by allocating more carbohydrate to the shoots at the expense of the roots when faced with interplant root competition.Key words: Overcrowding effect, interplant root competition, maize (zea mays L.), root discrimination


1982 ◽  
Vol 62 (4) ◽  
pp. 855-860 ◽  
Author(s):  
M. TOLLENAAR ◽  
T. B. DAYNARD

The effect of source-sink ratio (i.e., the ability of the leaves to produce photosynthate versus the capacity of the grain to accommodate the assimilates) on dry matter accumulation and leaf senescence during the grain filling period of two short-season maize (Zea mays L.) hybrids was investigated in 1979 and 1980. Source-sink ratio of the maize hybrids was altered by ear removal at midsilking and at 3 wk after midsilking; by partial fertilization of the topmost ear so that treatment ears contained approximately 50% of kernel number of the control; and by removal of all leaf blades but that of the ear leaf at 2 wk after midsilking. Crop growth rate during the period from 3–5 wk after midsilking was reduced by 30% for the partly fertilized treatment and by 60% for both ear removal treatments. During the period from 5 to 7 wk after midsilking, the treatment-by-hybrid interaction for crop growth rate reflected different patterns of leaf senescence. In one hybrid, treatments which caused reductions in sink size delayed leaf senescence and increased the crop growth during the 5 to 7-wk postsilking interval, relative to the control. The reverse was evident for the other hybrid. Partial defoliation tended to cause the remaining ear leaf to senescence slightly earlier than in the control. Apparently two types of leaf senescence occurred: senescence due to assimilate starvation, and senescence due to excessive assimilate accumulation. The former caused by excessively low source-sink ratio and the latter caused by excessively high source-sink ratio. These results indicate that a delicate balance exists between sink and source during the grain-filling period of maize, and that disturbance of this balance can cause substantial yield reductions, plus an acceleration of leaf senescence and maturation processes.


2020 ◽  
Vol 47 (1) ◽  
pp. 149-158
Author(s):  
Rong-Huan WANG ◽  
Tian-Jun XU ◽  
Chuan-Yong CHEN ◽  
Yuan-Dong WANG ◽  
Tian-Fang LYU ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document