Comparative Water‐Use Rates and Efficiencies, Leaf Diffusive Resistances, and Stomatal Action of Healthy and Stripe‐Smutted Kentucky Bluegrass 1

Crop Science ◽  
1986 ◽  
Vol 26 (2) ◽  
pp. 321-324 ◽  
Author(s):  
Jeff L. Nus ◽  
Clinton F. Hodges
2015 ◽  
Vol 12 (12) ◽  
pp. 9209-9242 ◽  
Author(s):  
A. Röll ◽  
F. Niu ◽  
A. Meijide ◽  
A. Hardanto ◽  
A. Knohl ◽  
...  

Abstract. Oil palm (Elaeis guineensis Jacq.) plantations cover large and continuously increasing areas of humid tropical lowlands. Landscapes dominated by oil palms usually consist of a mosaic of mono-cultural, homogeneous stands of varying age, which may be heterogeneous in their water use characteristics. However, studies on the water use characteristics of oil palms are still at an early stage and there is a lack of knowledge on how oil palm expansion will affect the major components of the hydrological cycle. To provide first insights into hydrological landscape-level consequences of oil palm cultivation, we derived transpiration rates of oil palms in stands of varying age, estimated the contribution of palm transpiration to evapotranspiration, and analyzed the influence of fluctuations in environmental variables on oil palm water use. We studied 15 two- to 25 year old stands in the lowlands of Jambi, Indonesia. A sap flux technique with an oil palm specific calibration and sampling scheme was used to derive leaf-, palm- and stand-level water use rates in all stands under comparable environmental conditions. Additionally, in a two- and a 12 year old stand, eddy covariance measurements were conducted to derive evapotranspiration rates. Water use rates per leaf and palm increased 5-fold from an age of two years to a stand age of approx. 10 years and then remained relatively constant. A similar trend was visible, but less pronounced, for estimated stand transpiration rates of oil palms; they varied 12-fold, from 0.2 mm day−1 in a 2 year old to 2.5 mm day−1 in a 12 year old stand, showing particularly high variability in transpiration rates among medium-aged stands. Confronting sap flux and eddy-covariance derived water fluxes suggests that transpiration contributed 8 % to evapotranspiration in the 2 year old stand and 53 % in the 12 year old stand, indicating variable and substantial additional sources of evaporation, e.g. from the soil, the ground vegetation and from trunk epiphytes. Diurnally, oil palm transpiration rates were characterized by an early peak between 10 and 11 a.m.; there was a pronounced hysteresis in the leaf water use response to changes in vapor pressure deficit for all palms of advanced age. On the day-to-day basis this resulted in a relatively low variability of oil palm water use regardless of fluctuations in vapor pressure deficit and radiation. We conclude, that oil palm dominated landscapes show some spatial variations in (evapo)transpiration rates, e.g. due to varying age-structures, but that the temporal variability of oil palm transpiration is rather low. Stand transpiration rates of some studied oil palm stands compared to or even exceed values reported for different tropical forests, indicating a high water use of oil palms under certain site or management conditions. Our study provides first insights into the eco-hydrological characteristics of oil palms as well as a first estimate of oil palm water use across a gradient of plantation age. It sheds first light on some of the hydrological consequences of the continuing expansion of oil palm plantations.


HortScience ◽  
2011 ◽  
Vol 46 (4) ◽  
pp. 643-647 ◽  
Author(s):  
John E. Erickson ◽  
Kevin E. Kenworthy

Irrigation of residential lawns represents one of the major uses of potable water in many regions. An increased understanding of physiological responses underlying effects of turfgrass genotypes and management practices on water use rates and water use efficiencies could contribute to water conservation. Thus, we evaluated the effects of nitrogen (N) fertilization (0.0 and 2.5 g·m−2) and light environment (full sun and 50% shade) on average daily evapotranspiration (ETAVE), daily ET per unit leaf area (ETLA), carbon exchange rate (CER), and water use efficiency (WUE) in upright (experimental TAES 5343-22) and prostrate (‘Empire’) zoysiagrasses (Zoysia japonica Steud.) during two repeated trials. Across all treatments, ETAVE was 4.0 and 5.4 mm·d−1 during Trials 1 and 2, respectively. In the upright-growing genotype, ETAVE was ≈10% greater than the prostrate genotype during Trial 1. Nitrogen fertilization increased water use by ≈20% compared with non-fertilized pots. However, N fertilization reduced ETLA and increased WUE. Thus, ETAVE was positively related with WUE. As a result, there was a tradeoff between ETAVE and WUE, indicating that efforts to achieve reductions in water use through low N fertilization or genotypes can be accomplished, but in some cases at the expense of using water less efficiently to assimilate carbon for plant growth processes. In turfgrass, reductions in growth and WUE might be acceptable to minimize water use, but vigor and quality need to be maintained.


Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 623 ◽  
Author(s):  
Tingting Mei ◽  
Dongming Fang ◽  
Alexander Röll ◽  
Dirk Hölscher

Bamboo water transport comprises the pathway rhizomes-culms-leaves as well as transfer among culms via connected rhizomes. We assessed bamboo water transport in three big clumpy bamboo species by deuterium tracing. The tracer was injected into the base of established culms, and water samples were collected from leaves of the labeled culms and from neighboring culms. From the base of labeled culms to their leaves, the average tracer arrival time across species was 1.2 days, maximum tracer concentration was reached after 1.8 days, and the tracer residence time was 5.6 days. Sap velocities were high (13.9 m d−1). Daily culm water use rates estimated by the tracer method versus rates measured by a calibrated sap flux method were highly correlated (R2 = 0.94), but the tracer estimates were about 70% higher. Elevated deuterium concentrations in studied neighbor culms point to deuterium transfer among culms, which may explain the difference in culm water use estimates. We found no differences in deuterium concentrations between neighbor-established and neighbor freshly sprouted culms of a given species. In two species, elevated concentrations in both neighbor-established and neighbor freshly sprouted culms were observed over an extended period. An applied mixing model suggests that five neighbor culms received labeled water. In contrast, for the third species, elevated concentrations in neighbor culms were only observed at the earliest sampling date after labeling. This could indicate that there was only short-term transfer and that the tracer was distributed more widely across the rhizome network. In conclusion, our deuterium tracing experiments point to water transfer among culms, but with species-specific differences.


2021 ◽  
Author(s):  
Charles Fontanier ◽  
Becky Cheary ◽  
Naba Amgain
Keyword(s):  

2015 ◽  
Vol 12 (19) ◽  
pp. 5619-5633 ◽  
Author(s):  
A. Röll ◽  
F. Niu ◽  
A. Meijide ◽  
A. Hardanto ◽  
A. Knohl ◽  
...  

Abstract. Oil palm (Elaeis guineensis Jacq.) plantations cover large and continuously increasing areas of humid tropical lowlands. Landscapes dominated by oil palms usually consist of a mosaic of mono-cultural, homogeneous stands of varying age, which may be heterogeneous in their water use characteristics. However, studies on the water use characteristics of oil palms are still at an early stage and there is a lack of knowledge on how oil palm expansion will affect the major components of the hydrological cycle. To provide first insights into hydrological landscape-level consequences of oil palm cultivation, we derived transpiration rates of oil palms in stands of varying age, estimated the contribution of palm transpiration to evapotranspiration, and analyzed the influence of fluctuations in environmental variables on oil palm water use. We studied 15 two- to 25-year old stands in the lowlands of Jambi, Indonesia. A sap flux technique with an oil palm specific calibration and sampling scheme was used to derive leaf-, palm- and stand-level water use rates in all stands under comparable environmental conditions. Additionally, in a two- and a 12-year old stand, eddy covariance measurements were conducted to derive evapotranspiration rates. Water use rates per leaf and palm increased 5-fold from an age of 2 years to a stand age of approx. 10 years and then remained relatively constant. A similar trend was visible, but less pronounced, for estimated stand transpiration rates of oil palms; they varied 12-fold, from 0.2 mm day−1 in a 2-year old to 2.5 mm day−1 in a 12-year old stand, showing particularly high variability in transpiration rates among medium-aged stands. Comparing sap flux and eddy-covariance derived water fluxes suggests that transpiration contributed 8 % to evapotranspiration in the 2-year old stand and 53 % in the 12-year old stand, indicating variable and substantial additional sources of evaporation, e.g., from the soil, the ground vegetation and from trunk epiphytes. Diurnally, oil palm transpiration rates were characterized by an early peak between 10 and 11 a.m.; there was a pronounced hysteresis in the leaf water use response to changes in vapor pressure deficit for all palms of advanced age. On the day-to-day basis this resulted in a relatively low variability of oil palm water use regardless of fluctuations in vapor pressure deficit and radiation. We conclude that oil palm dominated landscapes show some spatial variations in (evapo)transpiration rates, e.g., due to varying age-structures, but that the temporal variability of oil palm transpiration is rather low. The stand transpiration of some of the studied oil palm stands was as high or even higher than values reported for different tropical forests, indicating a high water use of oil palms under yet to be explained site or management conditions. Our study provides first insights into the eco-hydrological characteristics of oil palms as well as a first estimate of oil palm water use across a gradient of plantation age. It sheds first light on some of the hydrological consequences of the continuing expansion of oil palm plantations.


1994 ◽  
Vol 119 (6) ◽  
pp. 1317-1324 ◽  
Author(s):  
Yuguang Zhao ◽  
George C.J. Fernandez ◽  
Daniel C. Bowman ◽  
Robert S. Nowak

Cumulative evapotranspiration (ETcum) patterns of 10 commercially available cool-season turfgrass species and cultivars were evaluated under progressive water stress in the semi-field conditions using a gravimetric mass balance method in three studies. At the end of water stress, the cultivars were visually scored for green appearance on a 0 (no green) to 10 (100% green) scale. A Gompertz nonlinear model gave a best fit to ETcum vs. days adjusted for pan evaporation variation. Two of the ETcum attributes (ti, the time during which the rate change in ET is zero, and ETmax, the maximum ET rate) estimated from the Gompertz model appeared to reflect efficient water-use attributes in the turfgrass. Among the physiological screening techniques studied, electrolyte leakage, relative water content, and the difference between canopy and air temperature appeared to separate cultivars by drought resistance and water use efficiency (WUE). These physiological attributes were also relatively easy to measure and had high correlations with color score and WUE. Biplot display is a graphical technique in which the interrelationships between the cultivars and water-use attributes can be displayed together. Based on ti, ETmax, color score, and physiological attributes, `Wabash' and `Bristol' Kentucky bluegrass (Poa pratensis L.), `Aurora' hard fescue (Festuca ovina var. duriuscula L. Koch.), and `FRT-30149' fine fescue (F. rubra L.) were identified as cultivars with higher WUE.


2006 ◽  
Vol 16 (2) ◽  
pp. 241-246 ◽  
Author(s):  
Brian H. Hurd ◽  
Rolston St. Hilaire ◽  
John M. White

Residential landscapes are responsible for a large share of the water use of New Mexico communities. Water conservation plans and programs are being promulgated throughout New Mexico and the western U.S. as concern grows over the sufficiency and variability of present supplies, sustainability of current population growth rates, and desire for enhanced economic development. Household attitudes, choices, and behaviors ultimately underlie the success and performance of community water conservation programs. Homeowners in three New Mexico cities were surveyed concerning their attitudes and behavior toward water use, water conservation, and residential landscapes. Findings suggest that New Mexico's homeowners are mindful of the water resource challenges faced by communities, and are prepared to shoulder responsibility for stewarding the state's water resources. There is broad community support to limit traditional turfgrasses [e.g., kentucky bluegrass (Poa pratensis)] and to increase the areas planted to native, natural, and water-conserving landscapes; for example, 92% favored limiting turfgrass to less than 25% of the area around public buildings. Evidence showing that 40% are not “content” with their current landscape suggests that significant impediments remain and limit still greater adoption of water-conserving landscapes and subsequent potential for increased household water savings.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 640e-640
Author(s):  
Richard A. Wit ◽  
Garald L. Horst ◽  
Donald H. Steinegger ◽  
Blaine L. Blad

Depletion and contamination of traditional water supplies and population pressures are straining the water resources of the United States. This has placed increased emphasis on the need for water conservation through all phases of the use cycle. Objectives of this research were to: 1) Determine water use in residential, commercial, and institutional landscapes; 2) Evaluate landscape irrigation system performance; and 3) Evaluate feasibility of landscape irrigation scheduling. Beginning in 1991, water meters on 18 test sites in Lincoln, NE were read on a weekly basis. Water meter readings during the winter were used to develop a baseline on non-landscape water use. The “can test” method was used to evaluate landscape irrigation system precipitation rate and distribution efficiency. Four recording weather stations were used to estimate daily potential evapotranspiration (ETp). Lysimeters (20 cm dia. × 31 cm deep) were installed in two Kentucky bluegrass and one tall fescue landscape to estimate water use coefficients for calculating landscape evapotranspiration. Irrigation system Christiansen coefficients of uniformity ranged from .43 to .87 with scheduling coefficients ranging from 1.31 to over 15.14. Poor irrigation system performance characteristics made it difficult to schedule irrigation on estimated water use.


Sign in / Sign up

Export Citation Format

Share Document