scholarly journals Residential Landscapes, Homeowner Attitudes, and Water-wise Choices in New Mexico

2006 ◽  
Vol 16 (2) ◽  
pp. 241-246 ◽  
Author(s):  
Brian H. Hurd ◽  
Rolston St. Hilaire ◽  
John M. White

Residential landscapes are responsible for a large share of the water use of New Mexico communities. Water conservation plans and programs are being promulgated throughout New Mexico and the western U.S. as concern grows over the sufficiency and variability of present supplies, sustainability of current population growth rates, and desire for enhanced economic development. Household attitudes, choices, and behaviors ultimately underlie the success and performance of community water conservation programs. Homeowners in three New Mexico cities were surveyed concerning their attitudes and behavior toward water use, water conservation, and residential landscapes. Findings suggest that New Mexico's homeowners are mindful of the water resource challenges faced by communities, and are prepared to shoulder responsibility for stewarding the state's water resources. There is broad community support to limit traditional turfgrasses [e.g., kentucky bluegrass (Poa pratensis)] and to increase the areas planted to native, natural, and water-conserving landscapes; for example, 92% favored limiting turfgrass to less than 25% of the area around public buildings. Evidence showing that 40% are not “content” with their current landscape suggests that significant impediments remain and limit still greater adoption of water-conserving landscapes and subsequent potential for increased household water savings.

2012 ◽  
Vol 22 (6) ◽  
pp. 810-816 ◽  
Author(s):  
Stefano Fiorio ◽  
Stefano Macolino ◽  
Bernd Leinauer

Turfgrass water conservation has become important in many parts of the world, including the transition zones of Mediterranean Europe. Species selection is considered one of the most important factors influencing turfgrass water use, and drought-tolerant cool-season species are encouraged to be used in areas where long dormancy periods of warm-season grasses is unacceptable. A field study was conducted from Mar. 2007 to Sept. 2009 at Padova University, Italy, to evaluate establishment and performance of nine turfgrass cultivars under reduced-input maintenance. The study included hybrid bluegrass (Poa pratensis × P. arachnifera) cultivars Solar Green, Thermal Blue, and Thermal Blue Blaze; kentucky bluegrass (Poa pratensis) cultivars Cocktail, Cynthia, and Geronimo; and tall fescue (Festuca arundinacea) cultivars Apache, Murray, and Regiment. Establishment rate was assessed after two seeding dates (20 Mar. and 20 Sept.), and grasses were subsequently fertilized with 15 g·m−2 nitrogen per year and irrigated once every 2 weeks at 40% of reference evapotranspiration from June to August. Turfgrass and weed cover were estimated 60 days after seeding (DAS), and turf quality was evaluated weekly on a scale of 1 (worst) to 9 (best). Normalized difference vegetation index (NDVI) was measured weekly during 2009. Tall fescue cultivars exhibited greater quality than hybrid bluegrass or kentucky bluegrass, under both spring and autumn seeding. Hybrid bluegrass had similar quality to kentucky bluegrass cultivars, although they performed well only when sown in autumn. Our results suggest that among the tested grasses, tall fescue performed better under the reduced irrigation in a Mediterranean transition zone climate than kentucky bluegrass or hybrid bluegrass.


2004 ◽  
Vol 14 (1) ◽  
pp. 72-77 ◽  
Author(s):  
Jane E. Spinti ◽  
Rolston St. Hilaire ◽  
Dawn VanLeeuwen

We surveyed homeowners with residential landscapes in Las Cruces, N.M., to determine design features participants valued in their landscapes, their attitudes toward the landscape use of desert plants and opinions on factors that would encourage respondents to reduce landscape water use. We also determined whether the willingness to use desert plants in their landscapes related to the length of residency in the southwestern United States. At least 98% of respondents landscaped to enhance the appearance of their home and increase their property value. About half (50.6%) of the participants strongly agreed or agreed that the main reason to landscape was to display their landscape preferences. Many participants indicated they would use desert plants to landscape their front yard (80.3%) and back yard (56.3%), but relatively lower percentages of participants actually had desert landscapes in their front yard and back yard. Regardless of their property value, respondents were more likely to use desert plants in their backyard the shorter their stay in the desert. Data revealed that participants rank water shortages as the factor that would most likely cause them to reduce the amount of water they applied to their landscapes. We conclude that homeowners report willingness to use desert plants but desert-type landscapes are not a widespread feature of managed residential landscapes. Furthermore, water shortages and the length of time respondents spent in a desert environment would most likely influence water use in their landscapes.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 611
Author(s):  
Alex J. Lindsey ◽  
Adam W. Thoms ◽  
Nick E. Christians

Sports field traffic tolerance is critical for offering athletes a safe playing surface and adequate turfgrass performance. Humic substances act as bio-stimulants that could enhance turfgrass traffic tolerance by increasing turfgrass efficiency, which could be due to increased root growth, antioxidant activity, and/or physiological health. A two-year field experiment was conducted on a Kentucky bluegrass (Poa pratensis L.) sports field to investigate if incorporating humic substances with fertilizers could improve turfgrass traffic tolerance and performance, and enhance turfgrass recovery after traffic. Treatments included humic-coated urea, poly-coated humic-coated urea, synthetic fertilizer with black gypsum (two application timings), black gypsum, stabilized nitrogen, poly-coated sulfur-coated urea, urea, and a nontreated control. The addition of humic substances to fertilizer treatments did not result in improve traffic tolerance and performance. Fertilizer treatments did not lead to an effect on soil moisture, surface hardness, and shear strength. Turfgrass recovery varied between years. In 2020, the second year of the experiment, four applications of fertilizers increased turfgrass recovery by 136% relative to the nontreated. Furthermore, incorporating humic substances did not result in enhanced turfgrass recovery compared to fertilizers alone. Overall, applications of fertilizers with humic substances could improve turfgrass recovery from traffic compared to fertilizers alone, but results were variable between years.


1994 ◽  
Vol 119 (6) ◽  
pp. 1317-1324 ◽  
Author(s):  
Yuguang Zhao ◽  
George C.J. Fernandez ◽  
Daniel C. Bowman ◽  
Robert S. Nowak

Cumulative evapotranspiration (ETcum) patterns of 10 commercially available cool-season turfgrass species and cultivars were evaluated under progressive water stress in the semi-field conditions using a gravimetric mass balance method in three studies. At the end of water stress, the cultivars were visually scored for green appearance on a 0 (no green) to 10 (100% green) scale. A Gompertz nonlinear model gave a best fit to ETcum vs. days adjusted for pan evaporation variation. Two of the ETcum attributes (ti, the time during which the rate change in ET is zero, and ETmax, the maximum ET rate) estimated from the Gompertz model appeared to reflect efficient water-use attributes in the turfgrass. Among the physiological screening techniques studied, electrolyte leakage, relative water content, and the difference between canopy and air temperature appeared to separate cultivars by drought resistance and water use efficiency (WUE). These physiological attributes were also relatively easy to measure and had high correlations with color score and WUE. Biplot display is a graphical technique in which the interrelationships between the cultivars and water-use attributes can be displayed together. Based on ti, ETmax, color score, and physiological attributes, `Wabash' and `Bristol' Kentucky bluegrass (Poa pratensis L.), `Aurora' hard fescue (Festuca ovina var. duriuscula L. Koch.), and `FRT-30149' fine fescue (F. rubra L.) were identified as cultivars with higher WUE.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 640e-640
Author(s):  
Richard A. Wit ◽  
Garald L. Horst ◽  
Donald H. Steinegger ◽  
Blaine L. Blad

Depletion and contamination of traditional water supplies and population pressures are straining the water resources of the United States. This has placed increased emphasis on the need for water conservation through all phases of the use cycle. Objectives of this research were to: 1) Determine water use in residential, commercial, and institutional landscapes; 2) Evaluate landscape irrigation system performance; and 3) Evaluate feasibility of landscape irrigation scheduling. Beginning in 1991, water meters on 18 test sites in Lincoln, NE were read on a weekly basis. Water meter readings during the winter were used to develop a baseline on non-landscape water use. The “can test” method was used to evaluate landscape irrigation system precipitation rate and distribution efficiency. Four recording weather stations were used to estimate daily potential evapotranspiration (ETp). Lysimeters (20 cm dia. × 31 cm deep) were installed in two Kentucky bluegrass and one tall fescue landscape to estimate water use coefficients for calculating landscape evapotranspiration. Irrigation system Christiansen coefficients of uniformity ranged from .43 to .87 with scheduling coefficients ranging from 1.31 to over 15.14. Poor irrigation system performance characteristics made it difficult to schedule irrigation on estimated water use.


1995 ◽  
Vol 13 (4) ◽  
pp. 181-185 ◽  
Author(s):  
David Staats ◽  
James E. Klett

Abstract In June 1991, a 2-year field study was initiated to examine if three non-turf groundcovers require less irrigation than Kentucky bluegrass (KBG). Irrigation treatments were based on decreasing percentage of évapotranspiration (ET) (100%, 75%, 50%, 25% and 0%). ET was estimated by the modified Penman equation using alfalfa as a reference crop. Plants receiving the 0% irrigation treatment were not irrigated and relied on precipitation for survival. The groundcovers studied were Kentucky bluegrass ‘Challenger’ (Poa pratensis L.), creeping potentilla (Potentilla tabernaemontani Asch.), goldmoss (Sedum acre L.) and snow-in-summer (Cerastium tomentosum L.). Data were collected on visual ratings, growth, soil moisture and canopy temperature. Optimum irrigation for KBG was 50% ET. Cerastium required irrigation at 50%-75% of estimated ET during the initial season (1991) for optimum appearance and growth. During 1992, the plants were better established and 25% ET was optimum. Potentilla required irrigation at the 75% ET rate for optimum visual quality. Sedum maintained a good aesthetic appearance at irrigation rates as low as 25% ET and could be considered as a water-conserving alternative to KBG


2012 ◽  
Vol 3 (3) ◽  
pp. 225-238 ◽  
Author(s):  
Vivek Shandas ◽  
Meenakshi Rao ◽  
Moriah McSharry McGrath

Social and behavioral research is crucial for securing environmental sustainability and improving human living environments. Although the majority of people now live in urban areas, we have limited empirical evidence of the anticipated behavioral response to climate change. Using empirical data on daily household residential water use and temperature, our research examines the implications of future climate conditions on water conservation behavior in 501 households within the Portland (OR) metropolitan region. We ask whether and how much change in ambient temperatures impact residential household water use, while controlling for taxlot characteristics. Based on our results, we develop a spatially explicit description about the changes in future water use for the study region using a downscaled future climate scenario. The results suggest that behavioral responses are mediated by an interaction of household structural attributes, and magnitude and temporal variability of weather parameters. These findings have implications for the way natural resource managers and planning bureaus prepare for and adapt to future consequences of climate change.


1983 ◽  
Vol 15 (S2) ◽  
pp. 65-93 ◽  
Author(s):  
B C Armstrong ◽  
D W Smith ◽  
J J Cameron

This paper reviews water requirements and the alternatives for water conservation in small, relatively remote northern communities. Requirements are examined in terms of basic needs and desires for sanitation from an individual household and a community perspective. Presented are factors which influence water use such as the method of delivery, household plumbing, socio-economic aspects, rate structure, climate and plumbing codes. Similarly, factors which influence water conservation are identified. Outlined in detail are current methods of reducing water use within the northern household.


Sign in / Sign up

Export Citation Format

Share Document