Winter Wheat Grain Yield Responses to Soil Oxygen Diffusion Rates 1

Crop Science ◽  
1986 ◽  
Vol 26 (2) ◽  
pp. 355-361 ◽  
Author(s):  
James E. Box
2018 ◽  
Vol 176 ◽  
pp. 10-17 ◽  
Author(s):  
Lifang Wang ◽  
Jutao Sun ◽  
Zhengbin Zhang ◽  
Ping Xu ◽  
Zhouping Shangguan

2020 ◽  
Vol 1 (1) ◽  
pp. 45-49
Author(s):  
Tsotne Samadashvili ◽  
Gulnari Chkhutiashvili ◽  
Mirian Chokheli ◽  
Zoia Sikharulidze ◽  
Qetevan Nacarishvili

Wheat is a vital crop in Georgia and in the world. Because of the increase in the rate of population growth, improving the grain yield is the way to meet food demand. Proper crop nutrition plays a vital role in maintaining the world’s food supply. Fertilizer is essential for accomplishing this.One of the most important means for increasing the wheat yield is fertilizer, especially, organic fertilizer. The present research was carried out to study the effects of different doses (150ml, 200ml and 300 ml on ha) of humic organic fertilizer “Ecorost” on yield of winter wheat cultivar “Tbilisuri 15”. The humic liquid fertilizer "Ecorost" is a peat-based organic-mineral fertilizer. The product is active and saturated due to the use of the latest technology and living bacteria found in peat. The field trials were conducted in 2017-2019 at the Experimental Site of Scientific Research Center of Agriculture in Dedopliskharo- arid region (Eastern Georgia).Liquid fertilizer was applied two times: in tillering stage in early spring and two weeks after - in stem elongation stage. Results indicated that the highest wheat grain yield (4t/ha) was achieved when the plants were fertilized with 300 ml on 1 ha ofEcorost. Applications of liquid fertilizer “Ecorost” increased grain yield of winter wheat by 16.2% in comparison with standard nitrogen fertilization. Thus, liquid fertilizer “Ecorost” had a significant effect on wheat grain yield compared to control standard nitrogen fertilizer.


2019 ◽  
Vol 35 (1) ◽  
pp. 63-70
Author(s):  
Emmanuel Byamukama ◽  
Shaukat Ali ◽  
Jonathan Kleinjan ◽  
Dalitso N. Yabwalo ◽  
Christopher Graham ◽  
...  

2020 ◽  
Vol 112 (1) ◽  
pp. 564-577 ◽  
Author(s):  
Jagmandeep Dhillon ◽  
Elizabeth Eickhoff ◽  
Lawrence Aula ◽  
Peter Omara ◽  
Gwen Weymeyer ◽  
...  

2009 ◽  
Vol 60 (6) ◽  
pp. 566 ◽  
Author(s):  
R. F. Brennan ◽  
M. D. A. Bolland

Canola (oilseed rape, Brassica napus L.) is now grown in rotation with spring wheat (Triticum aestivum L.) on the predominantly sandy soils of south-western Australia. For both crop species, fertiliser nitrogen (N) and phosphorus (P) need to be applied for profitable grain production. The fertiliser N requirements have been determined separately for canola or wheat when adequate P was applied. By contrast, the fertiliser P requirements of the 2 species have been compared in the same experiment when adequate N was applied and showed that canola consistently required ~25–60% less P than wheat to produce 90% of the maximum grain yield. We report results of a field experiment conducted at 7 sites from 2000 to 2003 in the region to compare grain yield responses of canola and wheat to application of N and P in the same experiment. Four levels of N (0–138 kg N/ha as urea [46% N]) and 6 levels of P (0–40 kg P/ha as superphosphate [9.1%P]) were applied. Significant grain yield responses to applied N and P occurred for both crop species at all sites of the experiment, and the N × P interaction for grain production was always significant. To produce 90% of the maximum grain yield, canola required ~40% more N (range 16–75%) than wheat, and ~25% less P (range 12–43%) than wheat. For both crop species at 7 sites, applying increasing levels of N had no significant effect on the level of P required for 90% of maximum grain yield, although at 1 site the level of P required to achieve the target yield for both crop species when no N was applied (nil-N treatment) was significantly lower than for the other 3 treatments treated with N. For both crop species at all 7 sites, applying increasing levels of P increased the level of N required for 90% of the maximum grain yield. Fertiliser P had no significant effect on protein concentration in canola and wheat grain, and oil concentration in canola grain. As found in previous studies, application of increasing levels of N decreased oil concentration while increasing protein concentration in canola grain, and increased protein concentration in wheat grain. The N × P interaction was not significant for protein or oil concentration in grain. Protein concentrations in canola grain were about double those found in wheat grain.


1997 ◽  
Vol 37 (5) ◽  
pp. 577 ◽  
Author(s):  
W. J. Slattery ◽  
G. W. Ganning ◽  
V. F. Burnett ◽  
D. R. Coventry

Summary. In a long-term liming experiment in north-eastern Victoria, we have re-applied lime and applied gypsum (1992 season) to assess wheat grain yield responses with on-going changes in soil pH and extractable aluminium. An acid-sensitive wheat (cv. Oxley) was grown in 2 seasons (1992–93), 12 years after initial applications of lime. Where lime (2.5 t/ha) was applied in 1992 to a previously unlimed soil, grain yield was increased by 19 and 46% respectively in the 2 seasons. However, the yield from these newly limed plots was well below the yields obtained from plots limed in 1980. Re-liming plots limed in 1980 resulted in further yield increases, with lime re-applied at 2.5 t/ha increasing yields by 12% in both seasons. Gypsum decreased grain yields on unlimed soil in the year of application but in the second year gave increases in yield. Whilst pH had changed little in the unlimed soil over the 12 years, the concentrations of extractable aluminium in the root zone increased substantially such that these concentrations far exceed levels which may affect acid-sensitive wheats. Liming at 2.5 t/ha did reduce the aluminium at 0–10 cm depth, but the concentrations at 10–20 cm depth (11.7 mg/kg) are likely to restrict grain yield. The data illustrate the progressive nature of soil acidification and the risk to wheat productivity through delaying treating this soil degradation problem.


1997 ◽  
Vol 11 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Phillip W. Stahlman ◽  
Randall S. Currie ◽  
Mosad A. El-Hamid

A three-year field study in west-central Kansas investigated the effects of combinations of spray carrier, nonionic surfactant (NIS), triasulfuron, and/or 2,4-D on winter wheat foliar injury and grain yield. Herbicides applied in water without NIS caused little or no foliar injury in two of three years. Urea-ammonium nitrate (UAN) at 112 L/ha (40 kg N/ha) alone or as a carrier for herbicides caused moderate to severe foliar injury in all three years. Adding NIS to UAN spray solutions increased foliar injury, especially with the tank mixture of triasulfuron + 2,4-D. Effects of triasulfuron + NIS or 2,4-D applied in UAN were additive. Foliar injury was related inversely to temperature following application. Foliar injury was most evident 4 to 7 d after application and disappeared within 2 to 3 wk. Diluting UAN 50% with water lessened foliar injury in two of three years, especially in the presence of NIS, regardless of whether herbicides were in the spray solution. Treatments did not reduce wheat grain yield in any year despite estimates of up to 53% foliar injury one year.


2015 ◽  
Vol 107 (3) ◽  
pp. 1002-1010 ◽  
Author(s):  
Xiangnan Li ◽  
Hanchun Pu ◽  
Fulai Liu ◽  
Qin Zhou ◽  
Jian Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document