Potential Application of TRAP (Targeted Region Amplified Polymorphism) Markers for Mapping and Tagging Disease Resistance Traits in Common Bean

Crop Science ◽  
2006 ◽  
Vol 46 (2) ◽  
pp. 910-916 ◽  
Author(s):  
Phillip N. Miklas ◽  
Jinguo Hu ◽  
Niklaus J. Grünwald ◽  
Karen M. Larsen
HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 547a-547
Author(s):  
Geunhwa Jung ◽  
James Nienhuis ◽  
Dermot P. Coyne ◽  
H.M. Ariyarathne

Common bacterial blight (CBB), bacterial brown spot (BBS), and halo blight (HB), incited by the bacterial pathogens Xanthomonas campestris pv. phaseoli (Smith) Dye, Pseodomonas syringae pv. syringa, and Pseudomonas syringae pv. phaseolicola, respectively are important diseases of common bean. In addition three fungal pathogens, web blight (WB) Thanatephorus cucumeris, rust Uromyces appendiculatus, and white mold (WM) Sclerotinia sclerotiorum, are also destructive diseases attacking common bean. Bean common mosaic virus is also one of most major virus disease. Resistance genes (QTLs and major genes) to three bacterial (CBB, BBS, and HB), three fungal (WB, rust, and WM), and one viral pathogen (BCMV) were previously mapped in two common bean populations (BAC 6 × HT 7719 and Belneb RR-1 × A55). The objective of this research was to use an integrated RAPD map of the two populations to compare the positions and effect of resistance QTL in common bean. Results indicate that two chromosomal regions associated with QTL for CBB resistance mapped in both populations. The same chromosomal regions associated with QTL for disease resistance to different pathogens or same pathogens were detected in the integrated population.


2021 ◽  
Vol 5 ◽  
Author(s):  
Lingzhen Zeng ◽  
Lili Shi ◽  
Hetong Lin ◽  
Yuzhao Lin ◽  
Yixiong Lin ◽  
...  

Abstract Objectives The purpose of this work was to evaluate the potential application of papers containing 1-methylcyclopropene (1-MCP) postharvest treatment for suppressing fruit decay of fresh Anxi persimmons and its possible mechanism. Materials and methods Anxi persimmon fruit were treated with papers containing 1-MCP at the dosage of 1.35 μL/L and stored at 25 ± 1 °C and 85 per cent relative humidity for 35 days. During storage, the fruit decay rate and lignin content were evaluated, and the content of total phenolics, the activities of phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), peroxidase (POD), chitinase (CHI), and β-1,3-glucanase (GLU) were determined by spectrophotometry. Results The 1-MCP–treated persimmons displayed a lower fruit decay rate, but higher contents of lignin and total phenolics, higher activities of PAL, PPO, POD, CHI, and GLU. Conclusions The treatment with 1-MCP could inhibit the fruit decay of postharvest Anxi persimmons, which might be because 1-MCP enhanced fruit disease resistance by increasing the activities of disease resistance-associated enzymes and retaining higher contents of disease resistance-related substances in postharvest fresh Anxi persimmons. These findings indicate that papers containing 1-MCP at the dosage of 1.35 μL/L have potential application in suppressing fruit decay and extending storage life of postharvest fresh Anxi persimmons.


Planta ◽  
2016 ◽  
Vol 244 (6) ◽  
pp. 1265-1276 ◽  
Author(s):  
Lambert A. Motilal ◽  
Dapeng Zhang ◽  
Sue Mischke ◽  
Lyndel W. Meinhardt ◽  
Michel Boccara ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1260
Author(s):  
Ambuj B. Jha ◽  
Krishna K. Gali ◽  
Zobayer Alam ◽  
V. B. Reddy Lachagari ◽  
Thomas D. Warkentin

Growth and yield of pea crops are severely affected by various fungal diseases, including root rot, Ascochyta blight, powdery mildew, and rust, in different parts of the world. Conventional breeding methods have led to enhancement of host plant resistance against these diseases in adapted cultivars, which is the primary option to minimize the yield losses. To support the breeding programs for marker-assisted selection, several successful attempts have been made to detect the genetic loci associated with disease resistance, based on SSR and SNP markers. In recent years, advances in next-generation sequencing platforms, and resulting improvements in high-throughput and economical genotyping methods, have been used to make rapid progress in identification of these loci. The first reference genome sequence of pea was published in 2019 and provides insights on the distribution and architecture of gene families associated with disease resistance. Furthermore, the genome sequence is a resource for anchoring genetic linkage maps, markers identified in multiple studies, identification of candidate genes, and functional genomics studies. The available pea genomic resources and the potential application of genomic technologies for development of disease-resistant cultivars with improved agronomic profile will be discussed, along with the current status of the arising improved pea germplasm.


Euphytica ◽  
2014 ◽  
Vol 202 (2) ◽  
pp. 269-284 ◽  
Author(s):  
M. Gouy ◽  
Y. Rousselle ◽  
A. Thong Chane ◽  
A. Anglade ◽  
S. Royaert ◽  
...  

1993 ◽  
Vol 73 (3) ◽  
pp. 785-793 ◽  
Author(s):  
Shree P. Singh ◽  
Albeiro Molina ◽  
Carlos A. Urrea ◽  
J. Ariel Gutiérrez

Recently, interracial hybridization was used successfully in breeding common bean (Phaseolus vulgaris L.), but its use has not been adequately documented. Approximately 125 lines with medium-sized seed were selected in the first cycle, mostly from race Durango × race Mesoamerica (both from the Middle American domestication center) single- and multiple-cross populations, for disease resistance and race Durango characteristics. Fifteen of these improved lines, three race Durango control cultivars, and one control cultivar each from races Jalisco and Mesoamerica were evaluated for 3 yr (1989–1991) at three locations in Colombia. A randomized complete block design with three replications was used. Lines were developed using visual mass selection for seed yield and/or resistance to diseases in F2 and F3, followed by single plant harvests in F4 or F5 and seed increases in F6 or F7. Lines resistant to bean common mosaic virus and possessing other desirable traits were yield-tested in F7 or F8. All but two lines outyielded Alteño and Flor de Mayo, the highest yielding control cultivars from races Durango and Jalisco, respectively. Two lines also outyielded Carioca, the race Mesoamerica control cultivar. Improved lines tended to possess higher yield per day. All lines were resistant to bean common mosaic virus and most lines also carried a high level of resistance to anthracnose. Plant, seed, and maturity characteristics of most improved lines were similar to those of race Durango control cultivars. These results support the use of interracial hybridization in improving race Durango common bean. Key words: Common bean, Phaseolus vulgaris, race Durango, interracial populations, seed yield, disease resistance


Sign in / Sign up

Export Citation Format

Share Document