Food Quality and Safety
Latest Publications


TOTAL DOCUMENTS

184
(FIVE YEARS 117)

H-INDEX

15
(FIVE YEARS 4)

Published By Oxford University Press

2399-1402, 2399-1399

Author(s):  
Yi An ◽  
Weitai Lu ◽  
Wenze Li ◽  
Langlang Pan ◽  
Mengzhu Lu ◽  
...  

Abstract Dietary fiber (DF) is one of the major classes of nutrients for humans. It is widely distributed in the edible parts of natural plants, with the cell wall being the main DF-containing structure. The DF content varies significantly in different plant species and organs, and the processing procedure can have a dramatic effect on the DF composition of plant-based foods. Given the considerable nutritional value of DF, a deeper understanding of DF in food plants, including its composition and biosynthesis, is fundamental to the establishment of a daily intake reference of DF and is also critical to molecular breeding programs for modifying DF content. In the past decades, plant cell wall biology has seen dramatic progress, and such knowledge is of great potential to be translated into DF-related food science research and may provide future research directions for improving the health benefits of food crops. In this review, to spark interdisciplinary discussions between food science researchers and plant cell wall biologists, we focus on a specific category of DF—cell wall carbohydrates. We first summarize the content and composition of carbohydrate DF in various plant-based foods, and then discuss the structure and biosynthesis mechanism of each carbohydrate DF category, in particular the respective biosynthetic enzymes. Health impacts of DF are highlighted, and finally, future directions of DF research are also briefly outlined.


Author(s):  
Francesca Biandolino ◽  
Isabella Parlapiano ◽  
Lucia Spada ◽  
Antonella Di Leo ◽  
Maria Calò ◽  
...  

Abstract Objectives The paper evaluated the benefit and risk for human health associated with consumption of sea cucumber H. polii from Italian coasts (Central Mediterranean Sea). Materials and Methods body wall-BW, internal tunic-ITu, muscle bands-MB, alimentary canal-AC, gonad-Gd and respiratory tree-RT of H. polii were analyzed for proximate composition. Moreover, aminoacids, fatty acids and polycyclic aromatic hydrocarbons (PAHs) were determined with HPLC UV/Vis, GC-FID and GC-MS, respectively. Results Differences in the contents of Total Aminoacids (TAA) occurred based on tissue and sex, with AC and MB of female and Gd of male showing higher contents (range 47.8 -60.2 g/kg ww). Glycine and glutamic acid were the most abundant. Polyunsaturated (PUFA) was the major class of fatty acids and Arachidonic and Eicosapentaenoic (EPA) acids were the predominant PUFA. n-3 PUFA showed higher content in Gd, AC and RT indicating a higher quality. A favorable n-3/n-6 in the range 1.04-1.67 was observed. PAHs showed values ranged from 23 to 207 µg/kg ww with the highest levels in Gd-AC tissues and the lower in BW. Benzo[a]Pyrene, the most toxic compound, was detected in all tissues, of both sexes, at levels of 1.5-18 µg/Kg ww. Conclusion All tissues of H. polii, although with differences among them, are valuable food and can contribute for a healthy diet. Excess Cancer risk (CR) values for Gd and AC tissues, were above the considerable CR threshold of one in ten thousand established by USEPA, for high ingestion rate of these seafood.


Author(s):  
Youming Shen ◽  
Jianyi Zhang ◽  
Jiyun Nie ◽  
Hui Zhang ◽  
Syed Asim Shah Bacha

Abstract Microbes on fresh apples are closely associated with fruit disease, preservation and quality control. Investigation into the microbial communities on apples from different producing regions could reveal the microbial specificity and help disease prevention and quality control. In this paper, the apple surface microbes of forty-four samples from two main Chinese apple-producing regions, Bohai Bay (BHB) and the Loess Plateau (LP), were investigated by sequencing fungal internal transcribed spacer (ITS) and bacterial 16S rRNA hypervariable sequences. BHB and LP apples contained significantly different bacterial and fungal communities. BHB apples had a higher fungal diversity than LP apples. A total of 102 different fungal and bacterial taxonomies were obtained between apples from the two regions, in which 24 genera were predominant. BHB apples had higher phytopathogenic fungal genera, such as Tilletiopsis, Acremonium, Candida and Phoma, indicating the higher phytopathogenic risks of apples from the humid climate of the BHB region. LP apples contained more bacterial genera identified as gut microbes, indicating the potential risks of contaminating apples with foodborne pathogens in the arid environment of the LP. This study highlighted the environment-oriented microbial specificity on apples from two main apple-producing regions, and provided a basis for further investigation.


Author(s):  
Changxin Shen ◽  
Lian Liu ◽  
Xiaoyao Yin ◽  
Fengqin Tu ◽  
Kejia Wu ◽  
...  

Abstract Perchlorate concentrations in 387 unhusked rice samples from 15 main producing provinces in China were investigated by HPLC–MS/MS. The results indicated that perchlorate displays a mean level of 17.17 μg/kg in unhusked rice samples. Intriguingly, we also found that perchlorate is mainly observed in rice husk among of these collected unhusked rice samples, while less observed in rice bran and milled rice. Specifically, the perchlorate levels in rice were found in the husks (73.61%), bran (10.09%) and milled rice (19.52%), respectively. Our results indicated that there is no significantly perchlorate exposure risk in edible milled rice. We suggested that perchlorate in rice can be greatly removed if deep processed unhusked rice and there is no perchlorate exposure risk in edible milled rice.


Author(s):  
Binfang Wu ◽  
Haitao Xu ◽  
Yufeng Shi ◽  
Zhijie Yao ◽  
Jiayu Yu ◽  
...  

Abstract Microelectrode glucose biosensor based on three-dimensional hybrid nanoporous platinum/graphene oxide nanostructure was developed for rapid glucose detection of tomato and cucumber fruits. The nanostructure was fabricated by a two-step modification method on microelectrode for loading a larger amount of glucose oxidase. The nanoporous structure was prepared on the surface of the platinum microelectrode by electrochemical etching, and then graphene oxide was deposited on the prepared nanoporous electrode by electrochemical deposition. The nanoprorous platinum/graphene oxide nanostructure had the advantage of improving the effective surface area of the electrode and the loading quantity of glucose oxidase. As a result, the biosensor achieved a wide range of 0.1-20.0 mM in glucose detection, which had the ability to accurately detect the glucose content. It was found that the three-dimensional hybrid nanostructure on the electrode surface realized the rapid direct electrochemistry of glucose oxidase. Therefore, the biosensor achieved high glucose detection sensitivity (11.64 μA mM -1cm -2), low detection limit (13 μM) and rapid response time (reaching 95% steady-state response within 3 seconds), when calibrating in glucose standard solution. In agricultural application, the as-prepared biosensor was employed to detect the glucose concentration of tomato and cucumber samples. The results showed that the relative deviation of this method was less than 5% when compared with that of HPLC, implying high accuracy of the presented biosensor in glucose detection in plants.


Author(s):  
Ahmed A M Elnour ◽  
Mohamed E S Mirghani ◽  
Nassereldeen A Kabbashi ◽  
Khalid Hamid Musa ◽  
Fahimeh Shahabipour ◽  
...  

Abstract Abstract Acacia seyal gum is an abundant source of natural polyphenolic compounds (NPPCs) and antioxidant activity with numerous benefits and is often used in cancer treatment. The type of extraction technique can significantly impact the yield and isolation of NPPCs from Acacia seyal gum (ASG). The traditional use of maceration extraction reportedly yields fewer NPPCs. Objectives This study investigates five extraction techniques for NPPCs and ASG antioxidant activity, namely: homogenisation, shaking, ultrasonication, magnetic stirring, and maceration. Materials and Methods The evaluation of the antioxidant activity (AoA) of the extracted NPPCs from ASG used five assays, namely: Total Flavonoids Content (TFC), Folin-Ciocalteu index (FCI), 2,2-Diphenyl-1-Picrylhydrazyl radical scavenging activity (DPPH), Ferric Reducing Antioxidant Power (FRAP), and Cupric Reducing Antioxidant Capacity (CUPRAC). Results To minimise the dataset dimensionality requires Principal Component Analysis. The ultrasonic and maceration techniques were the best techniques to extract NPPCs and examine the AoA of ASG, with a high correlation between the NPPCs and AoA. However, the maceration process was slow (12 h) compared to ultrasonication (1 h). Slow extraction can result in a decline of the NPPCs due to polyphenol oxidase-enzyme and impact productivity. Conclusions These findings provide an essential guide for the choice of extraction techniques for the effective extraction of NPPCs from ASG and other plant materials.


Author(s):  
Changkai Liu ◽  
Xue Wang ◽  
Heng Chen ◽  
Houyu Xia ◽  
Bingjie Tu ◽  
...  

Abstract Pot experiments were conducted in 2017, 2019, and 2020 to examine the effects of potassium nutrition on the nutritional components of vegetable soybeans with different K efficiency at immature and mature stages. Two vegetable soybean varieties with higher K efficiency and two varieties with lower K efficiency were studied in the low available K soil under the condition of no K and normal K fertilization. The results indicated that almost all nutritional components in vegetable soybean were affected by K, genotypes, inter-annual differences, and their interactions. In general, no K fertilization increased protein and amino acid concentrations but decreased oil, soluble sugar, sucrose, K, Mg, and Fe concentrations in immature and mature vegetable soybean. The sensitivity of nutritional components to K nutrition differed among varieties. For instance, K high-efficiency varieties generally exhibited higher protein and amino acid concentrations without K application. K high-efficiency vegetable soybeans are low-K tolerance varieties to isoflavones. The results of this study provide insights for high yield and quality vegetable soybean breeding against soil K deficiency.


Author(s):  
Jianxiong Hao ◽  
Junyi Zhang ◽  
Xueqi Zheng ◽  
Dandan Zhao

Abstract In the present study, the bactericidal efficacy of slightly acidic electrolyzed water (SAEW) against L. monocytogenes planktonic cells and biofilm on food-contact surfaces including stainless steel and glass was systematically evaluated. The results showed that SAEW (pH of 5.09 and available chlorine concentration (ACC) of 60.33 mg/L) could kill L. monocytogenes on food-contact surfaces completely in 30 s, whose disinfection efficacy is equal to that of NaClO solutions (pH of 9.23 and ACC of 253.53 mg/L). The results showed that long exposure time and high ACC contributed to the enhancement of the disinfection efficacy of SAEW on L. monocytogenes on food-contact surfaces. Moreover, the log reduction of SAEW treatment presented an increasing tendency within the prolonging of treatment time when SAEW was used to remove the L. monocytogenes biofilm formed on stainless steel and glass surfaces, which suggested that SAEW could remove L. monocytogenes biofilm effectively and its disinfection efficacy is equal to (in case of stainless steel) or higher than (in case of glass) that of high ACC of NaClO solutions. In addition, the results of the crystal violet staining and scanning electron microscopy (SEM) also demonstrated that SAEW treatment could remove the L. monocytogenes biofilm on food-contact surfaces.


Author(s):  
Yuhan Xu ◽  
Jian Yu ◽  
Jinhui Chen ◽  
Jiabao Gong ◽  
Li Peng ◽  
...  

Abstract Fresh-cut Chinese water chestnuts (CWCs) are prone to quality deterioration during storage, which does not meet consumer demand. In this study, the effect of exogenous melatonin (5 mM) on the quality and potential mechanisms in fresh-cut CWC was investigated. The results showed that melatonin treatment alleviated the cut-surface discoloration of CWCs. Not only did this treatment significantly slow down the increase in browning degree and b* as well as the decrease in L*, but also significantly delayed the loss of weight and total soluble solids. Further investigations indicated that melatonin-treated fresh-cut CWCs exhibited significantly lower total phenolics and soluble quinones and suppressed the activities of phenylalanine ammonia-lyase, polyphenol oxidase, and peroxidase. Meanwhile, when fresh-cut CWCs were treated with melatonin, the total flavonoid concentration was significantly decreased compared to the control. Additionally, melatonin significantly inhibited the accumulation of H2O2 and malondialdehyde (MDA) as well as enhanced the activities of superoxide dismutase and catalase by promoting the production of O2 -·. In summary, melatonin treatment may delay the surface discoloration of fresh-cut CWCs by inhibiting phenolic compound metabolism and improving antioxidant capacity, thereby effectively maintaining the quality, and prolonging the shelf life of fresh-cut CWCs.


Author(s):  
Lijiao Liang ◽  
Ping Wang ◽  
Tianming Qu ◽  
Xiaomei Zhao ◽  
Yiqiang Ge ◽  
...  

Abstract Introduction The raw milk is the basic raw material of dairy products, Bacillus cereus is a typical conditional pathogenic bacteria and cold-phagocytic spoilage bacteria in raw milk. This study established a qPCR method for detecting B. cereus in raw milk Materials and Methods In this study, a qPCR method for detecting B. cereus in raw milk was established. The specificity of the method was verified by using other Bacillus bacteria and pathogenic bacteria, the sensitivity of the method was evaluated by preparing recombinant plasmids and simulated contaminated samples, and the applicability of the method was verified by using pure spore DNA. The actual sample detection was completed by using the established qPCR method Results The qPCR established in this study can specifically detect B. cereus in raw milk. The LOD of the method was as low as 200 CFU/mL, and the LOQ ranged from 2 × 10 2 to 2 × 10 8 CFU/ml, the amplification efficiency of qPCR was 96.6% Conclusins The method established in this study can distinguish B. cereus from other Bacillus bacteria, and spore DNA can be used as the detection object. This method has the advantages of strong specificity, high sensitivity, wide application range and short detection time, which is expected to be applied in the dairy industry.


Sign in / Sign up

Export Citation Format

Share Document