Biofortification of Hard Red Winter Wheat by Genes Conditioning Low Phytate and High Grain Protein Concentration

Crop Science ◽  
2018 ◽  
Vol 58 (5) ◽  
pp. 1942-1953 ◽  
Author(s):  
Jorge P. Venegas ◽  
Robert A. Graybosch ◽  
Brian Wienhold ◽  
Devin J. Rose ◽  
Brian M. Waters ◽  
...  
2020 ◽  
Vol 100 (6) ◽  
pp. 737-746
Author(s):  
R.J. Graf ◽  
R.J. Larsen ◽  
B.L. Beres ◽  
R. Aboukhaddour ◽  
A. Laroche ◽  
...  

AAC Network is a semi-dwarf hard red winter wheat (Triticum aestivum L.) cultivar that is well adapted across western Canada and eligible for grades of Canada Western Red Winter (CWRW) wheat. It was developed using wheat × maize pollen doubled haploid methodology. AAC Network was evaluated in the Western Canadian Winter Wheat Cooperative registration trials relative to CDC Buteo, Emerson, Moats, and AAC Elevate for 4 yr (2016–2019). Based on 44 replicated trials, AAC Network produced grain yield similar to AAC Elevate, the highest yielding check, with a protein concentration 0.9 units higher. AAC Network had fair to good winter survival, relatively late maturity, short straw with excellent lodging resistance, and high test weight. AAC Network expressed resistance to stem and stripe rust, moderate resistance to leaf rust and common bunt, and intermediate resistance to Fusarium head blight. In addition to increased grain protein concentration, AAC Network showed improvements in gluten strength and flour water absorption, and it maintained the excellent milling yield and low flour ash attributes of the CWRW wheat class.


Author(s):  
Robert J. Graf ◽  
Brian L Beres ◽  
André Laroche ◽  
Reem Aboukhaddour ◽  
Jamie Larsen ◽  
...  

AAC Vortex is a hard red winter wheat (Triticum aestivum L.) cultivar well-adapted to all areas of western Canada and classified for grades of Canada Western Red Winter (CWRW) wheat. It was developed using doubled-haploid methodology. AAC Vortex was evaluated for registration relative to CDC Buteo, Emerson, Moats, and AAC Elevate across Alberta, Saskatchewan and Manitoba. Based on 44 replicated trials over 4 years (2016/17-2019/20), AAC Vortex had significantly higher grain yield than CDC Buteo and Emerson, and higher grain protein concentration than all of the checks except Emerson. AAC Vortex expressed winter survival and lodging resistance equal to the best checks, medium maturity and height, and acceptable test weight. AAC Vortex was resistant to stem, leaf and stripe rust, moderately resistant to Fusarium head blight, and susceptible to common bunt. AAC Vortex produced flour of higher protein concentration than all of the checks except Emerson, had higher clean wheat flour yield and loaf volume than all of the checks, and was similar in gluten strength to Emerson.


1990 ◽  
Vol 70 (3) ◽  
pp. 629-637 ◽  
Author(s):  
CHARLES F. McGUIRE ◽  
LARRY G. BLACKWOOD

The United States Department of Agriculture (USDA) grading standards for wheat places hard red spring and hard red winter (Triticum aestivum L. em. Thell) wheat into separate classes. One important criterion for this designation is kernel type. Because of genotypes being released by plant breeders in recent years, distinction between these two classes is difficult for grain graders. As a consequence some people in the grain industry favor placing both of these wheat types into one class. One hazard of this action is that end use properties of these two wheats, according to some industrial firms, is class dependent. We studied quality characteristics of five hard red spring and seven hard red winter wheat cultivars grown at the same three Montana locations in 5 different years to evaluate this concept. Analysis of variance indicated quality differences between classes for all traits except flour yields, which were similar for the two classes. Flour ash content, farinograph absorption, peak time, stability time, valorimeter, grain protein content, bake absorption, mix time, and loaf volume were all significantly higher for spring than winter wheats. These values were still higher for spring than winter wheats except for test weight when wheat protein content was the co-variate. Both statistical treatments show that hard red spring wheat flour has higher water absorption percent, longer dough mixing requirements, longer dough stability times, and higher loaf volumes than hard red winter wheat flour.Key words: Bread wheat quality, loaf volume, grain protein content, protein quality


2014 ◽  
Vol 41 (3) ◽  
pp. 227 ◽  
Author(s):  
Sebastian Kipp ◽  
Bodo Mistele ◽  
Urs Schmidhalter

Yield and grain protein concentration (GPC) represent crucial factors in the global agricultural wheat (Triticum aestivum L.) production and are predominantly determined via carbon and nitrogen metabolism, respectively. The maintenance of green leaf area and the onset of senescence (Osen) are expected to be involved in both C and N accumulation and their translocation into grains. The aim of this study was to identify stay-green and early senescence phenotypes in a field experiment of 50 certified winter wheat cultivars and to investigate the relationships among Osen, yield and GPC. Colour measurements on flag leaves were conducted to determine Osen for 20 cultivars and partial least square regression models were used to calculate Osen for the remaining 30 cultivars based on passive spectral reflectance measurements as a high-throughput phenotyping technique for all varieties. Using this method, stay-green and early senescence phenotypes could be clearly differentiated. A significant negative relationship between Osen and grain yield (r2 = 0.81) was observed. By contrast, GPC showed a significant positive relationship to Osen (r2 = 0.48). In conclusion, the high-throughput character of our proposed phenotyping method should help improve the detection of such traits in large field trials as well as help us reach a better understanding of the consequences of the timing of senescence on yield.


2001 ◽  
Vol 81 (3) ◽  
pp. 373-383 ◽  
Author(s):  
G. P. Lafond ◽  
Y. T. Gan ◽  
A. M. Johnston ◽  
D. Domitruk ◽  
F. C. Stevenson ◽  
...  

The recent advances in no-till seeding technology are providing new N management options for crop production on the prairies. The objectives of this study were to evaluate the potential interaction between P and N fertilizer on winter wheat production in a one-pass seeding and fertilizing system and to determine the feasibility of side-banding all N requirements using urea or anhydrous ammonia at planting as compared with the current practice of broadcasting ammonium nitrate early in the spring. Three forms of N fertilizer (urea, anhydrous ammonia, ammonium nitrate), three rates of N (50, 75 and 100 kg ha–1) and three rates of P (0, 9 and 17 kg P ha–1) were investigated. Urea and anhydrous ammonia were applied during the seeding operation, whereas ammonium nitrate was broadcast the following spring. Applying P fertilizer to the side and below the seed at planting with rates > 9 kg Pha–1 increased grain yield in 3 out of 6 site-years when ammonium nitrate was broadcast early in the spring. The positive yield response to P corresponded to soil test levels of 24 kg P ha–1. With soil test levels greater than 34 kg P ha–1, grain yield response to P fertilizer was not observed. When urea was banded at planting, together with P fertilizer, the yield increases with the increased P rates was shown only in 1 out of 6 site-years. At 5 of th e 6 site-years, grain protein concentration was not affected by P fertilizer; while for 1 site-year, the high rate of P fertilization decreased grain protein concentration. Responses of total grain N and P yields to P fertilization were parallel to the corresponding responses of P fertilization to grain yield, and were rarely associated with N or P concentrations in the grain. Applying N fertilizer at rates of 50 to 100 kg N ha–1 increased winter wheat grain yields by 3 to 8% in 3 out of 6 site-years. The high N rates increased grain protein concentrations in all 6 site-years. Grain protein concentration was 6% greater with N fertilizer applied as ammonium nitrate in early spring than when banding urea or anhydrous ammonia at planting. More consistent improvements in grain yield and grain protein concentration were obtained when the N fertilizer was applied as ammonium nitrate in the spring. Further research is required to determine the benefits of applying some of the crop’s N fertilizer requirements at planting, to reduce the risks of N stresses when the spring application is delayed because of adverse weather or soil conditions. Key words: Ammonium nitrate, anhydrous ammonia, grain yield, nitrogen timing, phosphorus, protein, urea


Sign in / Sign up

Export Citation Format

Share Document