scholarly journals Isolation Distances for Transgenic Alfalfa Seed Production in the Pacific Northwest

Crop Science ◽  
2019 ◽  
Vol 59 (4) ◽  
pp. 1701-1708
Author(s):  
Sandya R. Kesoju ◽  
Stephanie L. Greene ◽  
Ruth C. Martin ◽  
Matthew Kramer ◽  
Douglas B. Walsh ◽  
...  
Plant Disease ◽  
2005 ◽  
Vol 89 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Lindsey J. du Toit ◽  
Mike L. Derie ◽  
Pablo Hernandez-Perez

There are no previous reports of Verticillium wilt in fresh and processing spinach (Spinacia oleracea) crops in the United States. In 2002, a hybrid spinach seed crop in the Pacific Northwest developed late-season wilt symptoms. Assays of the harvested seed and stock seed of the male and female parents revealed 59.5, 44.0, and 1.5%, respectively, were infected with Verticillium dahliae. Assays of 13 stock or commercial seed lots grown in 2002 and 62 commercial lots harvested in 2003 in Denmark, Holland, New Zealand, and the United States revealed the prevalence of Verticillium spp. in commercial spinach seed. Sixty-eight lots (89%) were infected with Verticillium spp. at incidences ranging from 0.3 to 84.8%. Five spinach seed isolates of V. dahliae were pathogenic on each of three spinach cultivars by root-dip inoculation. V. dahliae was detected on 26.4% of the seed from 7 of 11 inoculated plants but on none of the seed from 6 control plants, demonstrating systemic movement of V. dahliae. Seed-to-seed transmission was also demonstrated by planting naturally infected seed lots. This is the first report of Verticillium wilt of spinach in the primary region of spinach seed production in the United States.


Weed Science ◽  
2020 ◽  
pp. 1-32
Author(s):  
Carolina San Martín ◽  
Mark E Thorne ◽  
Jennifer A Gourlie ◽  
Drew J Lyon ◽  
Judit Barroso

Abstract Harvest weed seed control (HWSC) may control problematic weeds by decreasing contributions to the weed seed bank. However, HWSC practices will not be effective if plants have shed a great part of their seeds before harvest, or if a low proportion of seed production is retained at a height that enables collection during harvest. The seed shattering pattern of several weed species was evaluated over three growing seasons to determine their potential to be controlled with HWSC in the Pacific Northwest (PNW). The studied weed species were downy brome (Bromus tectorum L.), feral rye (Secale cereale L.), Italian ryegrass [Lolium perenne ssp. multiflorum (Lam.) Husnot,], and rattail fescue [Vulpia myuros (L.) C.C. Gmel.]. Seed retention at harvest, seed production, and plant height differed among species, locations, and years. Environmental conditions influenced seed shattering patterns, particularly the time plants started to shatter seeds and the rate of the shattering. Agronomic factors such as herbicide use, inter-row space, or crop height/vigor also seemed to affect shattering patterns and seed production, but more specific studies must be conducted to determine their individual effects. Bromus tectorum, L. perenne ssp. multiflorum, and V. myuros had an average seed retention at harvest of less than 50%. In addition, the low seed retention height of V. myuros makes this species a poor candidate for HWSC. Secale cereale had average seed retention at harvest greater than 50% and seed retention height was greater than 30 cm. The variability of seed retention in different species will make the efficacy of HWSC practices species and environment dependent in PNW winter wheat cropping systems. Harvesting the wheat crop as early as possible will be crucial to the success of HWSC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Molly E. Dieterich Mabin ◽  
Johanne Brunet ◽  
Heathcliffe Riday ◽  
Lauren Lehmann

Selfing (self-pollination) is the ultimate form of inbreeding, or mating among close relatives. Selfing can create yield loss when inbreeding depression, defined as a lower survival and reproduction of inbred relative to outbred progeny, is present. To determine the impact of selfing in alfalfa (Medicago sativa L.), we quantified the selfing rate of 32 alfalfa seed production fields located in three regions, namely, the Pacific Northwest (PNW), the Central Valley of California (CEV), and the Imperial Valley of California (IMP). Selfing rates (the proportion of selfed seeds) varied between 5.3 and 30% with an average of 12.2% over the 32 seed production fields. In both the parents and their progeny, we observed an excess of heterozygotes relative to Hardy–Weinberg expectations. We detected notable levels of inbreeding in parents (0.231 ± 0.007 parental inbreeding coefficient) and progeny (0.229 ± 0.005). There were a 15% decrease in the number of seeds per stem (seed set) and a 13% decline in the number of seeds per pod in selfed relative to outcrossed stems, but negligible inbreeding depression for pods per raceme and seed weight. The number of racemes on selfed stems increased significantly in fields with greater selfing rates, supporting the presence of geitonogamous or among flower selfing. Despite the significant level of inbreeding depression, seed set did not decrease in fields with higher selfing rates, where the greater number of racemes on the selfed stems increased the seed set. The effects of the field selfing rate on the seed yield metrics were mostly indirect with direct effects of the number of racemes per stem. Available data indicate that the majority of selfing in alfalfa is pollinator-mediated, and thus, eliminating selfing in alfalfa seed production would require the selection of self-incompatible varieties, which, by eliminating inbreeding depression, would provide a 15% potential increase in seed yield and an increase in future hay yield.


Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 431-431 ◽  
Author(s):  
S. L. Gieck ◽  
P. B. Hamm ◽  
N. L. David ◽  
H. R. Pappu

With the recent report of several viruses infecting garlic (Allium sativum L.) grown in the Pacific Northwest (1–3), studies were initiated on cloves planted in the fall of 2006 to determine the presence of additional viruses infecting plants exhibiting mosaic and/or chlorotic leaves. Cloves from symptomatic plants of the cultivar ‘Early’ from two seed production fields in Benton County, WA and two seed production fields in Morrow County, OR were tested by two-step reverse transcription (RT)-PCR using primers specific to the coat protein (CP) of the allexiviruses (4), since garlic infected with this group had similar symptoms in Asia and South America (4). Of the 87 cloves tested, 84 were positive, and four representative samples of the RT-PCR amplicons from each location were cloned and sequenced. Sequence comparisons indicated that the cloves from both locations were infected with Garlic virus D (GarV-D), also known as Japanese garlic virus (JGV), since they shared 98% identity with known isolates (GenBank Accession Nos. L388922.1, AF519572.1, and AB010303.1). In addition, sequences of isolates from the Oregon cloves shared a 96% identity with a known isolate of Garlic virus B (GarV-B; GenBank Accession No. AF543829.1). Because no antiserum specific to these viruses was available, primers specific to the CP genes of GarV-D (JGV-F2/JGV-R2 5′-GCTCACTCRGATGTGTTAGC-3′ and 5′-CGCGTGGACATAAGTTGTTG-3′) and GarV-B (GVB-F1/GVB-R2 5′-GAGGAGAACTAACGCCACAC-3′ and 5′-ACGACCTAGCTTCCTACTTG-3′) were designed and the cloves were retested by RT-PCR using these virus-specific primers. With the GarV-D specific primers, 98 and 63% of the cloves were positive from Washington and Oregon, respectively, and 52% of the cloves from Oregon were positive using the GarV-B specific primers. None of the cloves tested from Washington were positive for GarV-B. The identity of the amplicons was verified by cloning and sequencing (GarV-D, GenBank Accession No. FJ643476; GarV-B, GenBank Accession No. FJ643475). Incidence of the two viruses differed between Oregon and Washington was likely due to the expansion of the seed lots in two different locations (California and Nevada) prior to planting in 2006. With such high infection rates, studies should be conducted to determine the impact of these viruses on yield when plants are singly infected as well as in combination with the other viruses known to infect garlic in this region. These and the other viruses (1) are likely to impact yield. To our knowledge, this is the first report of GarV-D (JGV) and GarV-B in garlic in the Pacific Northwest. References: (1) S. L. Gieck et al. Plant Dis. 91:461, 2007. (2) H. R. Pappu et al. Plant Dis. 89:205, 2005 (3) H. R. Pappu et al. Online publication. doi:10.1094/PHP-2008-0919-01-RS. Plant Health Progress, 2008. (4) T. Tsuneyoshi et al. Phytopathology 86:253, 1996.


Plant Disease ◽  
2005 ◽  
Vol 89 (8) ◽  
pp. 896-907 ◽  
Author(s):  
Lindsey J. du Toit ◽  
Fred J. Crowe ◽  
Mike L. Derie ◽  
Rhonda B. Simmons ◽  
Gary Q. Pelter

Carrot (Daucus carota subsp. sativus) seed crops in Oregon and Washington were surveyed in 2001-02 and 2002-03 for development of Xanthomonas campestris pv. carotae, causal agent of bacterial blight. For each state and season, 20 plants were sampled from each of 7 to 12 direct-seeded crops twice in the fall or winter and three times from spring to summer; and from each of 2 to 4 steckling (root-to-seed) crops three times from spring to summer. X. campestris pv. carotae was detected in 1 of 15 and 6 of 32 stock seed lots planted in the fall in Oregon and Washington, respectively, and in 2 of 6 steckling shipments planted in each state in the spring. The pathogen was detected at 102 to 108 CFU/g foliage in 1 of 22 and 10 of 14 direct-seeded crops within 2 months of planting in 2001 and 2002, respectively. The prevalence of X. campestris pv. carotae then increased through the season in most seed crops, although bacterial blight symptoms were not observed until April in Oregon and July in Washington in both seasons. In August 2002 and 2003, X. campestris pv. carotae was detected in all 10 and 13 crops surveyed in Oregon, respectively; and in 11 of 12 and 7 of 10 crops in Washington, respectively. The pathogen was typically less prevalent in steckling versus direct-seeded crops. X. campestris pv. carotae was detected in 20 of 22 and 19 of 23 harvested seed lots in Oregon and Washington, respectively, at populations ranging from 1.3 × 101 to 1.4 × 108 CFU/g seed. Airborne X. campestris pv. carotae, detected ≤1,600 m downwind of crops being threshed in Oregon in September of 2003 and 2004, may provide a source of inoculum for newly planted seed crops between overlapping biennial seasons for carrot seed production. Despite the prevalence of this pathogen in the Pacific Northwest, carrot seed lots free of X. campestris pv. carotae were detected, demonstrating the ability to produce clean seed in this region by adhering to recommended practices for management of bacterial blight.


2019 ◽  
Vol 39 (4) ◽  
pp. 452
Author(s):  
Margaret H. Massie ◽  
Todd M. Wilson ◽  
Anita T. Morzillo ◽  
Emilie B. Henderson

Sign in / Sign up

Export Citation Format

Share Document