Chemical and Mineralogical Properties of an Orangeburg Profile

1963 ◽  
Vol 27 (6) ◽  
pp. 688-693 ◽  
Author(s):  
V. E. Nash
2014 ◽  
Vol 72 (10) ◽  
pp. 3939-3953 ◽  
Author(s):  
Stanislav Frančišković-Bilinski ◽  
Robert Scholger ◽  
Halka Bilinski ◽  
Darko Tibljaš

2017 ◽  
Vol 102 (7) ◽  
pp. 1375-1383 ◽  
Author(s):  
Katherine Krupp ◽  
Mark Baskaran ◽  
Sarah J. Brownlee

2011 ◽  
Vol 35 (1) ◽  
pp. 25-40 ◽  
Author(s):  
Flávio Adriano Marques ◽  
Márcia Regina Calegari ◽  
Pablo Vidal-Torrado ◽  
Peter Buurman

The occurrence of Umbric Ferralsols with thick umbric epipedons (> 100 cm thickness) in humid Tropical and Subtropical areas is a paradox since the processes of organic matter decomposition in these environments are very efficient. Nevertheless, this soil type has been reported in areas in the Southeast and South of Brazil, and at some places in the Northeast. Aspects of the genesis and paleoenvironmental significance of these Ferralsols still need a better understanding. The processes that made the umbric horizons so thick and dark and contributed to the preservation of organic carbon (OC) at considerable depths in these soils are of special interest. In this study, eight Ferralsols with a thick umbric horizon (UF) under different vegetation types were sampled (tropical rain forest, tropical seasonal forest and savanna woodland) and their macromorphological, physical, chemical and mineralogical properties studied to detect soil characteristics that could explain the preservation of high carbon amounts at considerable depths. The studied UF are clayey to very clayey, strongly acidic, dystrophic, and Al-saturated and charcoal fragments are often scattered in the soil matrix. Kaolinites are the main clay minerals in the A and B horizons, followed by abundant gibbsite and hydroxyl-interlayered vermiculite. The latter was only found in UFs derived from basalt rock in the South of the country. Total carbon (TC) ranged from 5 to 101 g kg-1 in the umbric epipedon. Dichromate-oxidizable organic carbon represented nearly 75 % of TC in the thick A horizons, while non-oxidizable C, which includes recalcitrant C (e.g., charcoal), contributed to the remaining 25 % of TC. Carbon contents were not related to most of the inorganic soil variables studied, except for oxalate-extractable Al, which individually explained 69 % (P < 0.001) of the variability of TC in the umbric epipedon. Clay content was not suited as predictor of TC or of the other studied C forms. Bulk density, exchangeable Al3+, Al saturation, ECEC and other parameters obtained by selective extraction were not suitable as predictors of TC and other C forms. Interactions between organic matter and poorly crystalline minerals, as indicated by oxalate-extractable Al, appear to be one of the possible organic matter protection mechanisms of these soils.


2020 ◽  
Vol 45 (4) ◽  
Author(s):  
E.E.I. Irabor ◽  
A. K. Okunkpolor

The physico-chemical and mineralogical properties of a clay mineral deposit in Geheku, Kogi State, Nigeria were assessed. The results of the study revealed that the deposit consisted of phyllosilicate minerals- Illite, montmorillonite, kaolinite, halloysite, almandine; other minerals present were quartz and ramsdellite. The clay minerals exhibited good swelling property, medium plasticity, good thermal shock resistance and apparent porosity; it had refractoriness below 1200 oC. The properties of the clay reflected the combined properties of the constituent clay and non-clay minerals which recommends it for a variety of applications which requires the blend of property though the working temperature must be below 1200 oC. The clay mineral deposit colours were influenced by the minerals almadine and ramsdellite.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3626
Author(s):  
María Neftalí Rojas-Valencia ◽  
José Alberto Lopez-López ◽  
Denise Yeazul Fernández-Rojas ◽  
José Manuel Gómez-Soberón ◽  
Mabel Vaca-Mier

The construction sector generates 14,000 t/d of construction waste in Mexico City, these materials do not have real applications and end up accumulating in landfills. This work, the objective of which was to analyze the physicochemical and mineralogical properties of soil and construction waste used in the manufacture of Recoblocks, is divided in five stages. First, the excavation material was submitted to field tests. Physical and chemical tests were then carried out on construction waste. Subsequently, the optimal mixture for making Recoblocks was determined. Next, Recoblocks were evaluated and compared with blocks made with water only, without mucilage of Opuntia ficus, and finally a feasibility study was performed. The X-ray diffraction study showed the presence of plagioclase, minerals that improve bending resistance, hardness, durability, as well as resistance to stress in a material. Compared to blocks manufactured without mucilage, the use of Opuntia ficus mucilage increased the compressive strength of the material by 59%, as well as the erodibility. Recoblocks are an environmentally friendly option because they are based on recycled materials, dried under the sun, which eliminates the use of brick oven. The production cost per unit is just USD 0.19, so it is a viable option as a building material.


Sign in / Sign up

Export Citation Format

Share Document