Resolving Time, Mass Absorption Coefficient and Water Content with Gamma-Ray Attenuation

1969 ◽  
Vol 33 (5) ◽  
pp. 651-655 ◽  
Author(s):  
D. D. Fritton
2015 ◽  
Vol 754-755 ◽  
pp. 19-23
Author(s):  
Kahtan S. Mohammed ◽  
Ali Basheer Azeez ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamarudin Hussin ◽  
Azmi B. Rahmat

In this study, the dependence of gamma-ray absorption coefficient on amount and particle size of tungsten (W) in W-brass sintered compacts was investigated. To attain this goal, two sets of different W wt. % were prepared (W 65wt. %, W75wt. % and W85 wt. %). One set has compacts of as received powder and the other set has compacts of ball milled powder. The results showed that gamma-ray attenuation coefficient is inversely proportional to the particle size of the tested sintered compacts and directly proportional to the W content. Vickers microhardness, attenuation properties and microstructural characterization were carried out on the sintered samples. The attenuation test was conducted using gamma spectrometer with Genie 200 software. The samples of ball milled powder and of the highest volume fraction of W showed the highest hardness and attenuation values.


1992 ◽  
Vol 7 (4) ◽  
pp. 194-196 ◽  
Author(s):  
Stefano Battaglia ◽  
Marco Franzini ◽  
Leonardo Leoni

AbstractThis paper describes a new method for the simultaneous determination of mineral composition, mass thickness and mass absorption coefficient of a thin layer of a crystalline substance deposited on a crystalline substrate.The samples were deposited on membrane disc filters, consisting of mixtures of cellulose acetate and cellulose nitrate. Quantitative results are achieved by measuring the diffraction intensity of the analyte and the attenuation of a reflection of the crystalline material supporting the deposited sample. The mean accuracy of the analysis was found to be: ≈ 3% for mass thickness, ≈ 1% for mass absorption coefficient and ≈ 4% for quantitative mineralogical determination.


2011 ◽  
Vol 8 (2) ◽  
pp. 613-617 ◽  
Author(s):  
Baghdad Science Journal

In this study, dependence of gamma-ray absorption coefficient on the size of Pb particle size ranging from 200µm up to 2.5mm, using different weights of each particle size. The results show that gamma-ray attenuation coefficient is inversely proportional with the size of Pb particle size due to the reduction of the spaces between the lead particles.


1969 ◽  
Vol 13 ◽  
pp. 632-638 ◽  
Author(s):  
P. Lublin ◽  
P. Cukor ◽  
R. J. Jaworowski

For quantitative electron probe analysis, the raw intensity ratios must be corrected to take into account deviations due to absorption, fluoresecnce and electron beam penetration. The major correction is usually the absorption correction, so that for best results, accurate mass absorption coefficients are required. Many tables of absorption coefficients are calculated by interpolation or extrapolation from available measured values, and therefore new measurements are required for increased reliability. The region which requires the most attention for present-day probe analysis is the 2 to 10 Å range.Thin foils of the lighter metals are available for mass absorption coefficient measurements, but heavy metal foils, which must be extremely thin, are not obtainable, A method has been developed to prepare thin films of heavy metals on a suitable substrate by pyrolytic decomposition of metal organic compounds.


1990 ◽  
Vol 34 ◽  
pp. 325-335 ◽  
Author(s):  
Steve J. Chipera ◽  
David L. Bish

AbstractThe mass absorption coefficient is a useful parameter for quantitative characterization of materials. If the chemical composition of a sample is known, the mass absorption coefficient can be calculated directly. However, the mass absorption coefficient must be determined empirically if the chemical composition is unknown. Traditional methods for determining the mass absorption coefficient involve measuring the transmission of monochromatic X-rays through a sample of known thickness and density. Reynolds (1963,1967), however, proposed a method for determining the mass absorption coefficient by measuring the Compton or inelastic X-ray scattering from a sample using Mo radiation on an X-ray fluorescence spectrometer (XRF). With the recent advances in solid-state detectors/electronics for use with conventional powder diffractometers, it is now possible to readily determine mass absorption coefficients during routine X-ray diffraction (XRD) analyses.Using Cu Kα radiation and Reynolds’ method on a Siemens D-500 diffractometer fitted with a Kevex Si(Li) solid-state detector, we have measured the mass absorption coefficients of a suite of minerals and pure chemical compounds ranging in μ/ρ from graphite to Fe-metal (μ/ρ = 4.6-308 using Cu Kα radiation) to ±4.0% (lσ). The relationship between the known mass absorption coefficient and the inverse count rate is linear with a correlation coefficient of 0.997. Using mass absorption coefficients, phase abundances can be determined during quantitative XRD analysis without requiring the use of an internal standard, even when an amorphous component is present.


Sign in / Sign up

Export Citation Format

Share Document