Salts in Irrigation Drainage Waters: I. Effects of Irrigation Water Composition, Leaching Fraction, and Time of Year on the Salt Compositions of Irrigation Drainage Waters

1973 ◽  
Vol 37 (5) ◽  
pp. 770-774 ◽  
Author(s):  
J. D. Rhoades ◽  
R. D. Ingvalson ◽  
J. M. Tucker ◽  
M. Clark
Author(s):  
Qiyu Zhou ◽  
William Bleam ◽  
Douglas Soldat

Soil water loss by evaporation influences the sodium adsorption ratio (SAR) of irrigation drainage water. Evaporation concentrates sodium and magnesium but calcite precipitation has a more complicated effect on soluble calcium and alkalinity. Here we propose a revised sodicity hazard assessment that quantifies the impact of evaporative water loss and calcite precipitation on drainage water SAR. This paper shows sodicity hazard is determined by the initial composition of irrigation water as originally suggested by previous researchers, and provide a simple, accurate way to identify the potential sodicity hazard of any irrigation water. In particular, the initial equivalent concentration of alkalinity and calcium determine the salinization pathway followed during evaporation. If the irrigation water alkalinity exceeds soluble calcium expressed as equivalent concentrations, drainage water SAR approaches an upper limit determined by the initial relative concentration of sodium and magnesium. If irrigation water alkalinity is less than soluble calcium, drainage water SAR approaches a lower limit determined by the initial calcium, magnesium and sodium. In both cases the SAR is scaled by the square root of the concentration factor √Fc quantifying soil water loss. To assess the impact of evaporation and calcite precipitation on the SAR and test the accuracy of the new sodicity hazard assessment, we evaluated data from previously published lysimeter studies. We plotted water composition boundaries for each source water, comparing these boundaries to the drainage water composition recorded in the lysimeter studies. As salinity increased by evaporation, each drainage water followed a distinct salinization path.


Author(s):  
Welson L. Simões ◽  
Anderson R. de Oliveira ◽  
Alessandra M. Salviano ◽  
Jucicléia S. da Silva ◽  
Marcelo Calgaro ◽  
...  

ABSTRACT The objective of this study was to evaluate the influence of leaching fraction on the biometric and production characteristics and technological quality of the juice of sugarcane varieties grown in saline soil in the Brazilian semiarid region. The experimental design was in randomized blocks, with three repetitions, in a 2 × 3 × 3 factorial scheme, corresponding to two sugarcane cultivation cycles: plant cane and ratoon cane; three sugarcane varieties: RB72454, SP943206 and VAT90212; and, three leaching fractions of irrigation water: 0; 9.1; and 16.6%. Number of living leaves, number of internodes, leaf area, stem diameter, plant height, number of tillers, yield, total soluble solids content (°Brix), percentage of industrial fiber, juice purity, juice Pol%, cane Pol% and total recoverable sugar were evaluated. At the end of the two crop cycles, water use efficiency was determined. The varieties SP943206 and VAT90212 showed higher yield under leaching fraction of irrigation water of 9.1% in both cycles, and higher water use efficiency values were observed for the variety VAT90212. Application of leaching fractions to reduce soil salinity does not promote changes in the technological quality of the sugarcane varieties RB72454, SP943206 and VAT90212.


2020 ◽  
Vol 2 (1) ◽  
pp. p95
Author(s):  
Mohammad Ashiqur Rahman ◽  
Tanvir Ahmed ◽  
Mohammad Abdul Mojid

Irrigation with saline water adversely affects rice production and degrades land productivity in the coastal zones of many countries in the world. This study aimed at developing a suitable irrigation management practice to reduce the harmful effects of salinity on rice production under saline water irrigation. An experiment in raise-bed lysimeters was set in a split-split-plot design with irrigation–drainage practice as the main factor, irrigation water salinity as the sub-factor and rice variety as sub-sub factor; main factor and sub-factor comprised four treatments and the sub-sub factor comprised three treatments, each with three replications. The treatments of the main factor were – T1: 2-5 cm continuous ponding, T2: continuous saturation, T3: changing irrigation water after 3 days of application by maintaining 2-5 cm ponding depth, and T4: changing irrigation water after 5 days of application by maintaining 2-5 cm ponding depth. The sub-factor comprised – SL1: fresh water as control, SL2: saline water of 6 dS m-1, SL3: saline water of 9 dS m-1, and SL4: saline water of 12 dS m-1. The sub-sub factor comprised three salt-tolerant rice varieties V1: Binadhan-8, V2: Binadhan-10, and V3: BRRI dhan-47. The irrigation–drainage practices T2 and T3 provided significantly (p£0.05) improved growth and yield attributes of the rice varieties under salinity water level SL3 and SL4 compared to T1 and T4 treatments. The treatment T3 maintained least exposure of the crop to high degree of salinity and produced satisfactory plant attributes by inhibiting the detrimental effects of salinity. Therefore, T3 is suggested for adoption in practical fields when provision for removing high saline water from the rice fields can be arranged.


2021 ◽  
Vol 264 ◽  
pp. 01015
Author(s):  
Zulfiya Mirkhasilova ◽  
Мurat Yakubov ◽  
Lyudmila Irmuhamedova

In recent years, there has been a shortage of water resources in the basins of the Amu Darya and Syrdarya rivers, which is the result of the development of new lands for irrigation and the inappropriate use of water and land resources. A side effect of irrigation and land reclamation is the increasing flow of collector-drainage waters every year, which leads to a deterioration in the land reclamation state and pollution of water resources, which can lead to the ecological disaster of land and water resources. Currently, in the Republic of Uzbekistan, from the total volume of water resources of the Amu Darya and Syrdarya rivers, up to 68% is used for irrigation. Of this volume on the Republic territory, about 12% of collector-drainage waters of deteriorated quality are formed. With a shortage of water resources, they are used for irrigation. But irrigation with saline waters can lead to a deterioration in the land reclamation state. In this regard, new irrigation technologies are proposed, which can save both irrigation water and it is advisable to use underground pumped water for irrigation. Field experiments were carried out in the farm "Khozhilkhon-hozhi" in the farm named after A. Niyazov, Kuva district, Fergana region. A feature of the soil conditions in this farm is the small thickness of the covered fine earth, underlain by highly permeable gravel, strong and increased water permeability, with a deep groundwater level (GWL> 3 m). Large water losses are observed during irrigation. The calculation task was to determine how many hectares of land can be irrigated from one vertical drainage well, taking into account the irrigation time, inter-irrigation period, etc. The water-salt balance of the reclaimed lands for 2017-2019 was compiled. The water-salt balance showed that water supply and filtration from canals and atmospheric precipitation play the main role in the inlet part. In the consumable part, the main place is occupied by evapotranspiration and drainage flow. In general, a negative balance is formed on the territory annually by the type of a small salt carryover within 2.85 t / ha. On the territory of the farm and the experimental plot, cotton of the S-6524 variety was sown, the flow rate of the well is 30 l / s, the furrow consumption is 0.5 l / s. The composition of hypothetical salts in the pumped-out waters is calculated After the first irrigation of our field, the pumped-out water is diverted to the neighboring fields, while the first inter-irrigation period is 20 days. In the interval of these 20 days until the second irrigation of the cotton of the original field, it is possible to irrigate the same fields 5 hectares 8 times, in total 40 hectares of land. The experiments showed that irrigation with pumped water from vertical drainage wells did not have a negative impact on the yield of cotton. And the use of the recommended irrigation technology will reduce the shortage of irrigation water and improve the ecological situation of water resources.


1974 ◽  
Vol 3 (4) ◽  
pp. 311-316 ◽  
Author(s):  
J. D. Rhoades ◽  
J. D. Oster ◽  
R. D. Ingvalson ◽  
J. M. Tucker ◽  
M. Clark

Author(s):  
Raquele M. de Lira ◽  
Ênio F. de F. e Silva ◽  
Djalma E. Simões Neto ◽  
José A. Santos Júnior ◽  
Breno L. de C. Lima ◽  
...  

ABSTRACT The objective was to evaluate the growth and yield of sugarcane irrigated with brackish water and leaching fractions. A completely randomized experimental design was used, in a 5 x 2 factorial scheme, with four replicates. The treatments consisted of five irrigation water salinity levels (0.5, 2.0, 3.5, 5.0 and 6.5 dS m-1) and two leaching fractions (0 and 0.17), corresponding to 100 and 120% of the crop evapotranspiration. The irrigation management was performed daily. Irrigation water salinity levels were obtained by adding NaCl and CaCl2 to the public-supply water, in order to obtain a molar ratio between Na:Ca of 1:1. The following measurements were taken: height and stem diameter; number of tillers; number of leaves and leaf area with monthly frequency between 60 and 300 days after planting (DAP). It was concluded that irrigation water salinity negatively influenced the variables of growth and yield in the sugarcane, and the leaching fraction of 0.17 was capable of reducing the deleterious effects of the salts on the plants.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1306
Author(s):  
Tae In Ahn ◽  
Jung-Seok Yang ◽  
Soo Hyun Park ◽  
Heon Woo Moon ◽  
Ju Young Lee

Electrical conductivity of the growing media or drainage indicates the nutritional conditions in the cultivation system. However, the nutrient uptake phenomenon has not been related well to the soilless culture system. Herein, we report on the design, theoretical analyses, and verification of a method for an online indicator related to plant nutritional aspects. Models for simulating nutrient and water transport in a porous medium were constructed for analyses of the nutrient uptake estimation method. In simulation analyses, we summarized the theoretical relationships between flow rates of total nutrients in a substrate and nutrient uptake. For concept validation, we conducted a greenhouse experiment for correlation analysis with the growth of tomato plants, conventional nutrient, and water management indicators, and developed online indicators related to plant nutritional aspects. Onsite application of the indicator showed a higher correlation with tomato yield than conventional management indicators, such as transpiration, irrigation, drainage ratio, leaching fraction, and electrical conductivity of drainage. In addition, to assess the usability of a nutrient uptake indicator as an onsite decision-making technique, data normalization was conducted. Through this, the time series responsiveness of a nutrient uptake indicator to the yield change was confirmed.


Author(s):  
Raquele M. de Lira ◽  
Ênio F. de F. e Silva ◽  
Gerônimo F. da Silva ◽  
Diego H. S. de Souza ◽  
Elvira M. R. Pedrosa ◽  
...  

ABSTRACT The objective of this study was to evaluate the contents of macronutrients and also chlorine and sodium in the diagnostic leaf, and the extraction and export of macronutrients in sugarcane irrigated with saline water and leaching fractions. The experiment was conducted in a complete randomized design in a 5 x 2 factorial scheme with four replications, corresponding to five levels of water salinity (0.5, 2.0, 3.5, 5.0 and 6.5 dS m-1) and two leaching fractions (L1 = 0 and L2 = 0.17). The treatments were applied 60 days after planting. At 280 days after planting, diagnostic leaves were collected and used to evaluate the nutritional status and the contents of Cl and Na. At 360 days after planting, the sugarcane was harvested and its stalks were separated into tops and leaves. Exposure to water of increasing salinity linearly reduced the N, P, K and Mg contents of the diagnostic leaves and increased their Ca, Cl and Na contents. This effect was minimized by the application of the 0.17 leaching fraction. The extraction of nutrients followed the order K > Ca > N > Mg > S > P. The salinity of the irrigation water had a negative effect on the nutritional status of the plant and on its extraction and export of nutrients; the application of the 0.17 leaching fraction improved the results, except for Ca and S.


Sign in / Sign up

Export Citation Format

Share Document