scholarly journals Growth and yield of sugarcane irrigated with brackish water and leaching fractions

Author(s):  
Raquele M. de Lira ◽  
Ênio F. de F. e Silva ◽  
Djalma E. Simões Neto ◽  
José A. Santos Júnior ◽  
Breno L. de C. Lima ◽  
...  

ABSTRACT The objective was to evaluate the growth and yield of sugarcane irrigated with brackish water and leaching fractions. A completely randomized experimental design was used, in a 5 x 2 factorial scheme, with four replicates. The treatments consisted of five irrigation water salinity levels (0.5, 2.0, 3.5, 5.0 and 6.5 dS m-1) and two leaching fractions (0 and 0.17), corresponding to 100 and 120% of the crop evapotranspiration. The irrigation management was performed daily. Irrigation water salinity levels were obtained by adding NaCl and CaCl2 to the public-supply water, in order to obtain a molar ratio between Na:Ca of 1:1. The following measurements were taken: height and stem diameter; number of tillers; number of leaves and leaf area with monthly frequency between 60 and 300 days after planting (DAP). It was concluded that irrigation water salinity negatively influenced the variables of growth and yield in the sugarcane, and the leaching fraction of 0.17 was capable of reducing the deleterious effects of the salts on the plants.

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1548 ◽  
Author(s):  
Chenchen Wei ◽  
Fahu Li ◽  
Peiling Yang ◽  
Shumei Ren ◽  
Shuaijie Wang ◽  
...  

Brackish water has been widely used to irrigate crops to compensate for insufficient freshwater water supply for agricultural use. The goal of this research was to determine an efficient brackish water use method to increase irrigation efficiency and reduce N2O emission. To this end, we conducted a field experiment with four salinity levels of irrigation water (1.1, 2.0, 3.5, and 5.0 g·L−1 with drip irrigation) at Hetao Irrigation District (Inner Mongolia, China) in 2017 and 2018. The results show that irrigation with 3.5–5.0 g·L−1 water salinity increased the soil salinity compared with irrigation using 1.1–2.0 g·L−1 water salinity. The soil water content with 5.0 g·L−1 brackish water irrigation was significantly higher than with 1.1–3.5 g·L−1 water salinity due to the effect of salinity on crop water uptake. The overall soil pH increased with the increase in irrigation water salinity. Saturated soil hydraulic conductivity decreased with the increase in irrigation water salinity. These results indicate that brackish water irrigation aggravates the degree of soil salinization and alkalization. The soil N2O cumulative flux resulting from irrigation with 5.0 g·L−1 water salinity was 51.18–82.86% higher than that resulting from 1.1–3.5 g L−1 water salinity in 2017, and was 32.38–44.79% higher than that resulting from 1.1–2.0 g·L−1 in 2018. Irrigation with brackish water reduced maize yield, and the reduction in yield in 2018 was greater than that in 2017, but irrigation with 2.0 g·L−1 brackish water did not significantly reduce maize yield in 2017. These results suggest that reducing the salinity of irrigation water may effectively reduce soil N2O emission, alleviate the degree of soil salinization, and increase crop yield.


2020 ◽  
Vol 12 ◽  
pp. e3456
Author(s):  
Alzira Maria de Sousa Silva Neta ◽  
Lauriane Almeida dos Anjos Soares ◽  
Geovani Soares de Lima ◽  
Luderlandio de Andrade Silva ◽  
Fagner Nogueira Ferreira ◽  
...  

This study aimed to evaluate the gas exchanges and growth of the purple passion fruit cultivar ‘BRS Rubi do Cerrado’ as a function of the salinity levels of the irrigation water and nitrogen fertilization. The research was conducted in pots adapted as drainage lysimeters, placed within a plant nursery, using a Regolithic Neosol of sandy texture, in the municipality of Pombal-PB, Brazil. A randomized block design was used, testing five levels of electrical conductivity of irrigation water (0.3, 1.1, 1.9, 2.7, and 3.5 dS m-1) associated with four doses of nitrogen (50, 75, 100, and 125% of the recommendation). The irrigation water salinity above 0.3 dS m-1 compromised the leaf area and the relative water content of the purple passion fruit ‘BRS Rubi do Cerrado’. High doses of nitrogen enhance the deleterious effects of irrigation water salinity on stomatal conductance, transpiration, internal CO2 concentration, CO2 assimilation rate, number of leaves, stem diameter, and height of purple passion fruit plants. When waters with salinity levels of up to 1.3 dS m-1 are used, the dose of 125 mg of N kg-1 of soil is recommendation for providing increases in the CO2 assimilation rate of the purple passion fruit ‘BRS Rubi do Cerrado’ at 70 days after sowing (DAS). Water salinity increases electrolyte leakage, regardless of nitrogen doses.


2021 ◽  
Vol 923 (1) ◽  
pp. 012058
Author(s):  
RaghebH. Ajmi Al-bourky ◽  
Mohammed Radwan Mahmoud ◽  
Salama Tahseen Ali

Abstract A field experiment was carried out during the winter season 2020-2021 at research station of the College of Agriculture, University of Al-Muthanna (Al - Bandar) to study the effect of spraying with nano silica and salinity levels of irrigation water on the growth and yield of wheat. The experiment was applied in a strip split plot design. With three replications, the spraying included three concentrations of silica (3, 6, 9 ppm) and three concentrations of irrigation water salinity (3, 6, 9 ds m−1). The results indicated that the level of 9 ppm sprayed exceeded significantly in the following traits and gave the highest means.: plant height 84.26 cm, number of tillers 354.10 m2 tillers, area of flag leaf 40.19 cm2, spike length 9.89 cm, number of spikes 288.93 m2 and yield 4.27 tons ha−1. The results also indicated that the increase in salinity level led to a decrease in the characteristics of plant height 82.22 cm, number of tillers 319.43 m2 tillers, area of flag leaf 39.93 cm2, spike length 9.19 cm, number of spikes 260.13 m2, and yield, which amounted to 3.86 tons ha−1.


Author(s):  
José A. C. Wanderley ◽  
Carlos A. V. de Azevedo ◽  
Marcos E. B. Brito ◽  
Fagner N. Ferreira ◽  
Mailson A. Cordão ◽  
...  

ABSTRACT The objective of this study was to evaluate the gas exchange of ‘Redondo Amarelo’ passion fruit seedlings under the mitigating action of nitrogen fertilization on the salinity of irrigation water. The experiment was carried out in a greenhouse of the Universidade Federal de Campina Grande (CCTA-UFCG), Campus of Pombal, PB, Brazil, The experimental design was in randomized blocks, split plots, comprising five irrigation water electrical conductivities (plot) (ECw) (0.3; 1.0; 1.7; 2.4 and 3.1 dS m-1) and five doses of nitrogen (subplot) (60; 80; 100; 120 and 140% of 300 mg of N dm-3), in five blocks. Plants were grown in pots (Citropote JKS®) with volume of 3.780 mL, filled with soil, bovine manure, wood shavings in a proportion of 2:1:0.5 (mass basis), respectively. Water with salinity levels was applied in the period from 40 to 85 days after sowing. The internal CO2 concentration, transpiration, stomatal conductance and photosynthesis were measured at 55 and 70 days after sowing. There was an attenuating effect of nitrogen doses at irrigation water electrical conductivities of 1.7 and 2.4 dS m-1 on photosynthesis at 55 DAS. Irrigation water salinity reduces most of the variables evaluated, especially at the highest level studied (3.1 dS m-1).


2015 ◽  
Vol 43 (1) ◽  
pp. 214-221 ◽  
Author(s):  
Cenk KÜÇÜKYUMUK ◽  
Halit YILDIZ ◽  
Zeliha KÜÇÜKYUMUK ◽  
Ali ÜNLÜKARA

This study was conducted to determine the responses of '0900 Ziraat' sweet cherry cultivar grafted on mazzard (Prunus avium L.) and mahaleb (P. mahaleb L.) rootstocks, to different irrigation water salinity levels. One year old sweet cherry trees were planted in 50-liter pots at Eğirdir Fruit Research Station (Isparta, Turkey). Four different irrigation water salinity levels (S1=0.3 dS m-1, S2=2.0 dS m-1, S3=4.0 dS m-1 and S4=6 dS m-1) were used for both variety/rootstock combinations. The results showed that sweet cherry trees grafted on mahaleb rootstocks extracted more water under saline conditions than the ones grafted on mazzard. Water salinity levels caused more damage on 0900/mazzard than on 0900/mahaleb. Towards the end of the growing period, plant deaths were detected in S3 and S4 treatments. While leaf water potential (LWP) ranged from -1.54 to -3.33 MPa, stomatal conductance ranged from 26.8 to 199.5 mmol m-2 s-1. It was determined that both parameters decreased towards the end of the growing period for all treatments. Sodium (Na) uptake was excluded by 0900/mahaleb rootstocks, but chloride (Cl−) uptake was excluded only for higher saline conditions. As a result, mahaleb (P. mahaleb L.) rootstock could be recommended to be used as rootstock for sweet cherry culture under saline conditions.


2014 ◽  
Vol 11 (1) ◽  
pp. 141-146 ◽  
Author(s):  
MA Mojid ◽  
KFI Murad ◽  
SS Tabriz ◽  
GCL Wyseure

Response of wheat (Triticum aestivum L., cv. Shatabdi) to irrigation water of five salinity levels was investigated at the Bangladesh Agricultural University (BAU) farm with a view to search for a possible advantageous salinity level for the crop. The experiment comprised five treatments ? I1: irrigation by fresh water of background salinity 0.385 dS m?1 (control) and I2 ? I5: irrigation by synthetic saline water (prepared by mixing sodium chloride salt with fresh water) of electrical conductivity (EC) 4, 7, 10 and 13 dS m?1 (at 25oC), respectively. Wheat was grown under three irrigations applied at maximum tillering, booting and milking/grain filling stages, and with recommended fertilizer dose. Irrigation water of EC ?10 dS m?1 significantly (p = 0.05) suppressed most growth and yield attributes, and yield of wheat compared to irrigation by fresh water (I1). An attention-grabbing observation was that irrigation by saline water of 4 dS m?1 (I2) contributed positively to the crop attributes. Leaf area index (LAI), spike length, spikelets and grains per spike, 1000-grain weight and above ground dry matter (ADM) of wheat increased by 1.9?3.4, 0.9, 2.6, 7.4, 2.1 and 2.8?6.0%, respectively in I2 compared to the control. The improvement in the LAI and ADM in I2 was significant over I1. Because of the largest spike density, the utmost grain (3.85 t ha?1), straw (5.09 t ha?1) and biomass (8.93 t ha?1) yields of wheat were however obtained under I1. The proposition of the advantageous irrigation water salinity level of 4 dS m?1 thus warrants further investigation DOI: http://dx.doi.org/10.3329/jbau.v11i1.18225 J. Bangladesh Agril. Univ. 11(1): 141-146, 2013


2014 ◽  
Vol 11 (1) ◽  
pp. 147-152 ◽  
Author(s):  
MA Mojid ◽  
MS Mia ◽  
AK Saha ◽  
SS Tabriz

The effects of irrigation water salinity (12 dS m?1), imposed at maximum tillering (35?40 days after sowing, DAS) or booting (50?60 DAS) or grain filling (75?85 DAS) stage of wheat, on growth and yield of the crop was demonstrated. The experiment comprised four treatments – I1: irrigation by fresh water (FW) at all three growth stages (control), I2: irrigation by saline water (SW) at maximum tillering stage and by FW at other stages, I3: irrigation by SW at booting stage and by FW at other stages, and I4: irrigation by SW at grain filling stage and by FW at other stages. The experiment was set in a randomized complete block with three replications. Wheat was grown under three irrigations (each of 3 cm) and recommended fertilizer doses (120 kg N, 32 kg P, 62 kg K, 20 kg S, 3 kg Zn and 1 kg B ha?1). Salinity of irrigation water imposed, separately, at the three growth stages did not impart significant (p = 0.05) negative influence on plant height, spike density, spike length, spikelets and grains per spike and 1000-grain weight. It, however, significantly hindered leaf area index (LAI), above ground dry matter (ADM), grain and straw yields, grain-straw ratio and water productivity of the crop. The least grain (3.622 t ha?1) and straw (5.772 t ha?1) yields, LAI (1.24 and 2.18 at 50 and 70 DAS, respectively), ADM (0.80, 4.78 and 7.66 t ha?1) and water productivity (186.5 and 297.3 kg ha?1 cm?1) obtained under I3 implied that salinity of irrigation water imposed at booting stage exerted the maximum retarding effects on the growth and yield of wheat. Grain yield decreased by 13.4% in I3 over the control, I1. An increase in grain and biomass yields by 14.3 and 11.9%, respectively under I2 over I1 demonstrated a positive contribution of irrigation water salinity imposed at maximum tillering stage of wheat. DOI: http://dx.doi.org/10.3329/jbau.v11i1.18226 J. Bangladesh Agril. Univ. 11(1): 147-152, 2013


Irriga ◽  
2003 ◽  
Vol 8 (1) ◽  
pp. 29-36
Author(s):  
Márcio José de Santana ◽  
Jacinto De Assunção Carvalho ◽  
Messias José Bastos de Andrade ◽  
Elio Lemos da Silva

DESENVOLVIMENTO DO FEIJOEIRO (Phaseolus vulgaris L. cv ESAL 686) SOB IRRIGAÇÃO COM ÁGUA SALINA  Márcio José de Santana Jacinto de Assunção CarvalhoDepartamento de Engenharia, Universidade Federal de Lavras, Lavras, MG. CP 37, CEP 37200-000Messias José Bastos de AndradeDepartamento de Agricultura, Universidade Federal de Lavras, Lavras, MG. CP 37, CEP 37200-000Elio Lemos da SilvaDepartamento de Engenharia, Universidade Federal de Lavras, Lavras, MG. CP 37, CEP 37200-000  1 RESUMO  Foram avaliados os efeitos de concentrações de sais da água de irrigação sobre o comportamento vegetativo e produtivo do feijoeiro (Phaseolus vulgaris L. cv ESAL 686) e acúmulo de sais no solo. O experimento foi conduzido em casa de vegetação no Departamento de Engenharia da Universidade Federal de Lavras, em Lavras - MG, em delineamento inteiramente casualizado , com seis repetições e cinco níveis de salinidade da água: 0,10; 1,0; 2,5; 4,0 e 5,5 dS m-1. Os parâmetros vegetativos e produtivos foram negativamente influenciados pela salinidade da água de irrigação. Verificou-se também que a salinidade do solo aumentou com o aumento dos níveis em salinidade da água. As maiores salinidades da água de irrigação resultaram em menores consumos de água pelas plantas.  UNITERMOS: Feijão comum, salinidade da água, salinidade do solo.  SANTANA, M. J.; CARVALHO, J. A.; ANDRADE, M. J. B.; SILVA, E. L. DEVELOPMENT OF THE BEAN PLANT (PHASEOLUS VULGARIS L. CV ESAL 686) UNDER DIFFERENT IRRIGATION WATER SALINITY LEVELS  2 ABSTRACT  It was evaluated the effects of salt concentration in irrigation water on vegetative and productive behavior of the bean plant ( Phaseolus vulgaris L. cv. ESAL 686) and salt accumulation in the soil. The experiment was carried out in a greenhouse at the Engineering Department of Lavras Federal University, Lavras-MG, in a complete randomized design with six replications and five water salinity levels: 0.10; 1.0; 2.5; 4.0 and 5.5 dS m-1. The vegetative and productive parameters were negatively affected by the irrigation water salinity. It was also verified a soil salinity increase as salinity levels increase in the irrigation water. The highest water salinity level caused the lowest water consumption by plants.  KEYWORDS: French bean, irrigation water salinity, soil salinity


Sign in / Sign up

Export Citation Format

Share Document