Effects of Freeze-Thaw and Soil Structure on Nitrous Oxide Produced in a Clay Soil

2000 ◽  
Vol 64 (5) ◽  
pp. 1638-1643 ◽  
Author(s):  
Eric van Bochove ◽  
Danielle Prévost ◽  
France Pelletier
2012 ◽  
Vol 37 (1) ◽  
pp. 96-104 ◽  
Author(s):  
Åsa Myrbeck ◽  
Maria Stenberg ◽  
Johan Arvidsson ◽  
Tomas Rydberg

1998 ◽  
Vol 35 (3) ◽  
pp. 471-477 ◽  
Author(s):  
Peter Viklander

A fine-grained nonplastic till was compacted in the laboratory in three types of rigid wall permeameters, having a volume of 0.4, 1.5, and 25 dm3, respectively, and, was thereafter exposed to a maximum of 18 freezing and thawing cycles. The permeabilities in the vertical direction of saturated samples were measured in unfrozen soil as well as in thawed soil. The results show that the permeabilities changed after freezing and thawing. The magnitude of the changes in this study were in the range 0.02-10 times after freeze/thaw compared with the unfrozen soil. Soil exhibited volume changes subsequent to freeze/thaw. The volume typically decreased for an initially loose soil and increased for a dense soil. Independent of whether the initial soil structure was loose or dense, a constant "residual" void ratio, eres, was obtained after 1-3 cycles. For the soil investigated, the residual void ratio ranged from 0.31 to 0.40.Key words: till, fine-grained, non plastic, permeability, freeze/thaw, residual void ratio.


2018 ◽  
Vol 17 (1) ◽  
pp. 231-246 ◽  
Author(s):  
Zhe CHEN ◽  
Shi-qi YANG ◽  
Ai-ping ZHANG ◽  
Xin JING ◽  
Wei-min SONG ◽  
...  

2019 ◽  
Vol 134 ◽  
pp. 18-25
Author(s):  
Liquan Song ◽  
Yunlong Yao ◽  
Lin Lin ◽  
Weifeng Gao ◽  
Tijiu Cai ◽  
...  

2003 ◽  
Vol 26 (1) ◽  
pp. 9058 ◽  
Author(s):  
L David Suits ◽  
TC Sheahan ◽  
SM Rao ◽  
K Revanasiddappa

2009 ◽  
Vol 103 (1) ◽  
pp. 84-91 ◽  
Author(s):  
Paula Muukkonen ◽  
Helinä Hartikainen ◽  
Laura Alakukku

2014 ◽  
Vol 21 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Ismail Zorluer ◽  
Suleyman Gucek

AbstractThe use of waste materials as an additive in soil stabilization has been widespread. This is important in terms of recycling of waste materials and reducing environmental pollution. The objective of this study is to investigate the beneficial reuse of marble dust and fly ash in soil stabilization. Tests were performed on clay soil mixtures amended with marble dust and fly ash. Marble dust was used as an activator due to fly ash being inadequate for self-cementing. Unconfined compressive strength (qu), freeze-thaw, swelling, and California bearing ratio (CBR) tests were conducted to investigate the effect of marble dust and fly ash, curing time, and molding water content on geotechnical parameters. Addition of marble dust and fly ash increased unconfined compressive strength, CBR, and freeze-thaw strength, but these additives decreased swelling potential and grain loss after freeze-thaw. Increasing the curing time results in increased strength of mixtures and decreased grain loss. As a result, this study shows that the geotechnical properties of clay soil are improved with the addition of marble dust and fly ash. This is an economical and environmentally friendly solution.


2021 ◽  
Author(s):  
Frederic Leuther ◽  
Steffen Schlüter

Abstract. The ploughing of soils in autumn drastically loosens the soil structure and at the same time reduces its stability against external stresses. A fragmentation of these artificially produced soil clods during winter time is often observed in areas with air temperatures fluctuating around the freezing point. Farmers benefit from the structural transformation by frost action in terms of better seedbed preparation and improved hydraulic connectivity. Previous studies have mainly focused on the effects of freezing and thawing on soil structure stability rather than on the impact on pore structure. From the pore perspective, it is still unclear (i) under which conditions frost action has a measurable effect on soil structure, (ii) what the impact on soil hydraulic properties is, and (iii) how many freeze-thaw cycles (FTCs) are necessary to induce soil structure changes. The aim of this study was to analyse the cumulative effects of multiple FTC on soil structure and soil hydraulic properties for two different textures and two different initial structures. A silt clay with a substantial amount of swelling clay minerals and a silty loam with less swell/shrink dynamics were either kept intact in undisturbed soil cores taken from the topsoil from a grassland or repacked with soil clods taken from a ploughed field nearby. FTCs were simulated under controlled conditions and changes in pore structure ≥ 48 µm were regularly recorded using X-ray µCT. After 19 FTCs, the impact on hydraulic properties were measured and the resolution of structural characteristics were enhanced towards narrow macro-pores with subsamples scanned at 10 µm. The impact of FTC on soil structure was dependent on the initial structure, soil texture, and the number of FTCs. Frost action induced a consolidation of repacked soil clods, resulting in a systematic reduction in pore sizes and macro-pore connectivity. In contrast, the macro-pore systems of the undisturbed soils were only slightly affected. Independent of the initial structure, a fragmentation of soil clods and macro-aggregates larger than 0.8 to 1.2 mm increased the connectivity of pores smaller than 0.5 to 0.8 mm. The fragmentation increased the unsaturated hydraulic conductivity of all treatments by a factor of 3 in a pF range of 2.0 to 2.5, while water retention was only slightly affected for the silt clay soil. Already 2 to 5 FTCs enforced a well-connected meso-pore system in all treatments, but it was steadily improved by further FTCs. This steady improvement in structural quality in terms of meso-pore connectivity is put at risk by milder winters in mid-latitudes due to global warming.


Sign in / Sign up

Export Citation Format

Share Document