Detachment of Undisturbed Soil by Shallow Flow

2003 ◽  
Vol 67 (3) ◽  
pp. 713 ◽  
Author(s):  
Guang-hui Zhang ◽  
Bao-yuan Liu ◽  
Guo-bin Liu ◽  
Xiao-wu He ◽  
M. A. Nearing
2003 ◽  
Vol 67 (3) ◽  
pp. 713-719 ◽  
Author(s):  
Guang-hui Zhang ◽  
Bao-yuan Liu ◽  
Guo-bin Liu ◽  
Xiao-wu He ◽  
M. A. Nearing

Agronomie ◽  
2000 ◽  
Vol 20 (3) ◽  
pp. 297-307 ◽  
Author(s):  
Pierre Benoit ◽  
Enrique Barriuso ◽  
Philippe Vidon ◽  
Benoit Réal

2013 ◽  
Vol 27 (3) ◽  
pp. 239-246 ◽  
Author(s):  
A.E. Ajayi ◽  
M.S. Dias Junior ◽  
N. Curi ◽  
I. Oladipo

Abstract This study aimed to investigate the mineralogy, moisture retention, and the compressive response of two agricultural soils from South West Nigeria. Undisturbed soil cores at the A and B horizons were collected and used in chemical and hydrophysical characterization and confined compression test. X-ray diffractograms of oriented fine clay fractions were also obtained. Our results indicate the prevalence of kaolinite minerals relating to the weathering process in these tropical soils. Moisture retention by the core samples was typically low with pre-compression stress values ranging from50 to 300 kPa at both sites. Analyses of the shape of the compression curves highlight the influence of soil moisture in shifts from the bi-linear to S-shaped models. Statistical homogeneity test of the load bearing capacity parameters showed that the soil mineralogy influences the response to loading by these soils. These observations provide a physical basis for the previous classification series of the soils in the studied area. We showed that the internal strength attributes of the soil could be inferred from the mineralogical properties and stress history. This could assist in decisions on sustainable mechanization in a datapoor environment.


2020 ◽  
Vol 15 (1) ◽  
pp. 93-102
Author(s):  
Cristian PĂLTINEANU ◽  
◽  
Andrei VRINCEANU ◽  
Anca-Rovena LĂCĂTUȘU ◽  
Radu LĂCĂTUŞU ◽  
...  

1972 ◽  
Vol 52 (3) ◽  
pp. 311-321 ◽  
Author(s):  
K. W. AYRES ◽  
R. G. BUTTON ◽  
E. DE JONG

The relation between soil structure and soil aeration was investigated on undisturbed soil cores from soil horizons exhibiting six distinct kinds of soil structure (prismatic, columnar, blocky, granular, platy, massive) over a broad range of soil texture. Soil aeration was characterized at ⅓ atm suction by measurements of air porosity, relative diffusivity (D/Do) and the rate of oxygen diffusion to a platinum microelectrode (ODR). Aeration was adequate in most of the Chernozemic soil horizons studied; however, aeration in many of the Bnt horizons of the Solonetzic soils was inadequate. Air porosity and D/Do were highly correlated. The regression coefficient for D/Do vs. air porosity for blocky structures was significantly different from that found for the other five structural types. For granular structures a negative correlation was found for ODR vs. air porosity compared with a low positive correlation found for the other structure types.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 931
Author(s):  
Mona Giraud ◽  
Jannis Groh ◽  
Horst H. Gerke ◽  
Nicolas Brüggemann ◽  
Harry Vereecken ◽  
...  

Grasslands are one of the most common biomes in the world with a wide range of ecosystem services. Nevertheless, quantitative data on the change in nitrogen dynamics in extensively managed temperate grasslands caused by a shift from energy- to water-limited climatic conditions have not yet been reported. In this study, we experimentally studied this shift by translocating undisturbed soil monoliths from an energy-limited site (Rollesbroich) to a water-limited site (Selhausen). The soil monoliths were contained in weighable lysimeters and monitored for their water and nitrogen balance in the period between 2012 and 2018. At the water-limited site (Selhausen), annual plant nitrogen uptake decreased due to water stress compared to the energy-limited site (Rollesbroich), while nitrogen uptake was higher at the beginning of the growing period. Possibly because of this lower plant uptake, the lysimeters at the water-limited site showed an increased inorganic nitrogen concentration in the soil solution, indicating a higher net mineralization rate. The N2O gas emissions and nitrogen leaching remained low at both sites. Our findings suggest that in the short term, fertilizer should consequently be applied early in the growing period to increase nitrogen uptake and decrease nitrogen losses. Moreover, a shift from energy-limited to water-limited conditions will have a limited effect on gaseous nitrogen emissions and nitrate concentrations in the groundwater in the grassland type of this study because higher nitrogen concentrations are (over-) compensated by lower leaching rates.


Soil Systems ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 3
Author(s):  
David Singer ◽  
Elizabeth Herndon ◽  
Laura Zemanek ◽  
Kortney Cole ◽  
Tyler Sanda ◽  
...  

Coal mine spoil is widespread in US coal mining regions, and the potential long-term leaching of toxic metal(loid)s is a significant and underappreciated issue. This study aimed to determine the flux of contaminants from historic mine coal spoil at a field site located in Appalachian Ohio (USA) and link pore water composition and solid-phase composition to the weathering reaction stages within the soils. The overall mineralogical and microbial community composition indicates that despite very different soil formation pathways, soils developing on historic coal mine spoil and an undisturbed soil are currently dominated by similar mineral weathering reactions. Both soils contained pyrite coated with clays and secondary oxide minerals. However, mine spoil soil contained abundant residual coal, with abundant Fe- and Mn- (oxy)hydroxides. These secondary phases likely control and mitigate trace metal (Cu, Ni, and Zn) transport from the soils. While Mn was highly mobile in Mn-enriched soils, Fe and Al mobility may be more controlled by dissolved organic carbon dynamics than mineral abundance. There is also likely an underappreciated risk of Mn transport from coal mine spoil, and that mine spoil soils could become a major source of metals if local biogeochemical conditions change.


Sign in / Sign up

Export Citation Format

Share Document