Short-term Reestablishment of Soil Water Repellency after Wetting: Effect on Capillary Pressure-Saturation Relationship

2007 ◽  
Vol 71 (3) ◽  
pp. 692-702 ◽  
Author(s):  
Gilboa Arye ◽  
Itamar Nadav ◽  
Yona Chen
CATENA ◽  
2008 ◽  
Vol 74 (3) ◽  
pp. 185-191 ◽  
Author(s):  
Naama Tessler ◽  
Lea Wittenberg ◽  
Dan Malkinson ◽  
Noam Greenbaum

2013 ◽  
Vol 5 (2) ◽  
pp. 2119-2154 ◽  
Author(s):  
P. Pereira ◽  
X. Úbeda ◽  
J. Mataix-Solera ◽  
D. Martin ◽  
M. Oliva ◽  
...  

Abstract. The aim of this work was to study the short-term effects (first 9 months after the fire) of a low-severity spring boreal grassland fire on soil colour, soils organic matter (SOM) and soil water repellency (SWR) in Lithuania. Three days after the fire we designed a plot of 400 m2 in a control (unburned) and unburned area with the same geomorphological characteristics. Soil water repellency analysis were assessed through the 2 mm mesh (composite sample) and in the subsamples of all of the 250 samples divided into different soil aggregate fractions of 2–1, 1–0.5, 0.5–0.25 and < 0.25 mm, using the Water Drop Penetration Time (WDPT) method. The results showed that fire darkened the soil significantly during the entire study period due to the incorporation of ash/charcoal into the soil profile. Soil organic matter was significantly higher in the first two months after the fire in the burned plot, in comparison to the unburned plot. Soil water repellency (SWR) of the composite sample was higher in the burned plot during the first two months after the fire. However, considering the different aggregate fractions studied, the SWR was significantly higher until 5 months after the fire in the coarser fractions (2–1 mm, 1–0.5 mm) and 7 months after in the finer (0.5–0.25 mm and < 0.25 mm), suggesting that the leachability of organic compounds is different with respect to soil aggregate size fractions. This finding has implications for the spatio-temporal variability of fire effects on SWR. SOM was significantly negative correlated with SWR (composite sample) only in the two months after the fire. These results demonstrated that in the first two months the hydrophobic compounds produced by fire were one of the factors responsible for the increase in SWR. Subsequently repellent compounds were leached, at different rates, according to particle size. The impacts of this low severity grassland fire were limited in time, and are not considered a~threat to this ecosystem.


2021 ◽  
Vol 244 ◽  
pp. 106563
Author(s):  
Giuseppe Bombino ◽  
Serafina Andiloro ◽  
Adele Folino ◽  
Manuel Esteban Lucas-Borja ◽  
Demetrio Antonio Zema

Geoderma ◽  
2021 ◽  
Vol 402 ◽  
pp. 115264
Author(s):  
Enoch V.S. Wong ◽  
Philip R. Ward ◽  
Daniel V. Murphy ◽  
Matthias Leopold ◽  
Louise Barton

2014 ◽  
Vol 65 (3) ◽  
pp. 360-368 ◽  
Author(s):  
I. Kim ◽  
R. R. Pullanagari ◽  
M. Deurer ◽  
R. Singh ◽  
K. Y. Huh ◽  
...  

2013 ◽  
Vol 22 (4) ◽  
pp. 515 ◽  
Author(s):  
Naama Tessler ◽  
Lea Wittenberg ◽  
Noam Greenbaum

Variations in forest fires regime affect: (1) the natural patterns of community structure and vegetation; (2) the physico-chemical properties of soils and consequently (3) runoff, erosion and sediment yield. In recent decades the Mediterranean ecosystem of Mount Carmel, north-western Israel, is subjected to an increasing number of forest fires, thus, the objectives of the study were to evaluate the long-term effects of single and recurrent fires on soil water repellency (WR) and organic matter (OM) content. Water repellency was studied by applying water drop penetration time (WDPT) tests at sites burnt by single-fire, two fires, three fires and unburnt control sites. Water repellency in the burnt sites was significantly lower than in the unburnt control sites, and the soil maintained its wettability for more than 2 decades, whereas after recurrent fires, the rehabilitation was more complicated and protracted. The OM content was significantly lower after recurrent than after a single fire, causing a clear proportional decrease in WR. The rehabilitation of WR to natural values is highly dependent on restoration of organic matter and revegetation. Recurrent fires may cause a delay in recovery and reduced productivity of the soil for a long period.


2014 ◽  
Vol 27 (5) ◽  
pp. 1413-1423 ◽  
Author(s):  
Nicasio T. Jiménez‐Morillo ◽  
José A. González‐Pérez ◽  
Antonio Jordán ◽  
Lorena M. Zavala ◽  
José María Rosa ◽  
...  

Author(s):  
Jim J. Miller ◽  
Mallory Owen ◽  
Ben Ellert ◽  
Xueming Yang ◽  
Craig F. Drury ◽  
...  

Soil water repellency (SWR) was measured for a 28 yr field study under irrigation on a clay loam Dark Brown soil in southern Alberta. The objectives were to study the effect of legume-cereal crop rotations, feedlot manure, and phosphorus (P) fertilizer application on soil hydrophobicity (SH) and soil water repellency index (RI) under irrigation. Mean SH and RI were similar (P > 0.05) for a legume-cereal and cereal rotation, and were unaffected by P fertilization. However, P fertilization shifted the RI classification from slight to sub-critical. In contrast, SH was significantly greater for manured than non-manured treatments, while RI was unaffected. Soil organic carbon (SOC) concentration was significantly (P ≤ 0.05) correlated with SH (r=0.74), but not with RI (r=-0.17). This suggested a closer association between the quantity of SOC and quantity of hydrophobic compounds (SH method) compared to the hydrophobic coatings inhibiting infiltration of water (RI method). No significant correlation between SH and RI (r=-0.09) suggests that SH is not a good predictor of SWR using the RI method. Overall, manure application increased SH and P fertilization shifted the RI classification from slight to sub-critical. In contrast, legume-cereal rotations had no influence on SH and SWR using RI method compared to continuous cereal.


Sign in / Sign up

Export Citation Format

Share Document