Soil Organic Matter Stability in Intensively Managed Ponderosa Pine Stands in California

2010 ◽  
Vol 74 (3) ◽  
pp. 979-992 ◽  
Author(s):  
Karis J. McFarlane ◽  
Stephen H. Schoenholtz ◽  
Robert F. Powers ◽  
Steven S. Perakis
2010 ◽  
Vol 19 (5) ◽  
pp. 613 ◽  
Author(s):  
Jeff A. Hatten ◽  
Darlene Zabowski

This study investigated the changes in soil organic matter composition by controlling fire severity of laboratory burns on reconstructed surface soil profiles (O, A1 (0–1 cm), and A2 (1–2 cm)). Laboratory burning simulated prescribed burns that would be typical in the understorey of a ponderosa pine forest at low, moderate, and high–moderate severity levels. Soils were analysed for C, N and soil organic matter composition. Soil organic matter was fractionated into humin, humic acid, fulvic acid, soluble non‐humic materials and other hydrophobic compounds. In the O horizon, low‐, moderate‐, and high‐severity treatments consumed an increasing proportion of C and N. Carbon content of the mineral soil was unaffected by burning; however, N content of the A2 horizon decreased after the moderate‐ and high‐severity treatments, likely as a result of N volatilisation. The proportion of non‐soluble material in the O horizon increased with fire severity, whereas the proportion of humin C as total C of the A horizon decreased with fire severity. The decrease in humin was followed by an increase in the other hydrophobic compounds. The higher fire intensity experienced by the burning O horizon created recalcitrant materials while an increase in labile soil organic matter was observed in mineral soil. An increase in labile soil organic matter may cause elevated C and N mineralisation rates often seen after fire.


2009 ◽  
Vol 33 (6) ◽  
pp. 1593-1602 ◽  
Author(s):  
Troy Patrick Beldini ◽  
Kenneth L McNabb ◽  
B. Graeme Lockaby ◽  
Felipe G Sanchez ◽  
Osvaldo Navegantes-Câncio ◽  
...  

Eucalyptus grandis and other clonal plantations cover about 3.5 million ha in Brazil. The impacts of intensively-managed short-rotation forestry on soil aggregate structure and Carbon (C) dynamics are largely undocumented in tropical ecosystems. Long-term sustainability of these systems is probably in part linked to maintenance of soil organic matter and good soil structure and aggregation, especially in areas with low-fertility soils. This study investigated soil aggregate dynamics on a clay soil and a sandy soil, each with a Eucalyptus plantation and an adjacent primary forest. Silvicultural management did not reduce total C stocks, and did not change soil bulk density. Aggregates of the managed soils did not decrease in mass as hypothesized, which indicates that soil cultivation in 6 year cycles did not cause large decreases in soil aggregation in either soil texture. Silt, clay, and C of the sandy plantation soil shifted to greater aggregate protection, which may represent a decrease in C availability. The organic matter in the clay plantation soil increased in the fractions considered less protected while this shift from C to structural forms considered more protected was not observed.


2007 ◽  
Vol 7 ◽  
pp. 166-174 ◽  
Author(s):  
Rosa Inclán ◽  
Daniel De la Torre ◽  
Marta Benito ◽  
Agustín Rubio

Soil-surface CO2efflux and its spatial and temporal variation were investigated in a southern Mediterranean, mixed pine-oak forest ecosystem on the northern slopes of the Sierra de Guadarrama in Spain from February 2006 to July 2006. Measurements of soil CO2efflux, soil temperatures, and moisture were conducted in nine 1963-m2sampling plots distributed in a gradient around the ecotone betweenPinus sylvestrisL. andQuercus pyrenaicaLam. forest stands. Total soil organic matter, Walkey-Black C, particulate organic matter, organic matter fraction below 53 μm, total soil nitrogen content, total soil organic carbon content, and pH were also measured under three representative mature oak, pine, and mixed pine-oak forest stands. Soil respiration showed a typical seasonal pattern with minimums in winter and summer, and maximums in spring, more pronounced in oak and oak-pine stands. Soil respiration values were highest in pine stands during winter and in oak stands during spring and summer.Soil respiration was highly correlated with soil temperatures in oak and pine-oak stands when soil moisture was above a drought threshold of 15%. Below this threshold value, soil moisture was a good predictor of soil respiration in pine stands. Greater soil organic matter, particulate organic matter, Walkey-Black C, total organic C, and total N content in pine compared to oak sites potentially contributed to the greater total soil CO2efflux in these stands during the winter. Furthermore, opposing trends in the organic matter fraction below 53 μm and soil respiration between plots suggest that in oak stands, the C forms are less affected by possible changes in use. The effects of soil properties on soil respiration were masked by differences in soil temperature and moisture during the rest of the year. Understanding the spatial and temporal variation even within small geographic areas is essential to assess C budgets at ecosystem level accurately. Thus, this study bears important implications for the study of large-scale ecosystem dynamics, particularly in response to climatic change.


2001 ◽  
Vol 41 (3) ◽  
pp. 361 ◽  
Author(s):  
I. R. P. Fillery

Considerable progress has been made with the quantification of inputs and losses of nitrogen (N) for a number of legume-based dryland rotations, enabling the fate of legume-derived N to be determined with greater accuracy than previously. Analyses of nitrate (NO3–) in soil profiles to a depth of at least 0.6 m, during and after legume phases, together with measurements of net N mineralisation are providing a much clearer insight of the capacity of legume phases to supply inorganic N. Advances in procedures used to determine drainage have improved estimates of NO3– leaching for a range of soils and rainfall conditions. The loss of N from urine patches and rates of ammonia volatilisation from grazed fields are fairly well characterised. In contrast, the amounts of N lost from legume-based rotations through denitrification are largely unknown. The ingestion of 60–70% of the legume N by animals in intensively managed pastures highlights the pivotal roles grazing animals can play in the transformations of N in pastures. Most of the ingested N is excreted, with the proportion returned in urine dependent on the N content of feed consumed. The tendency of sheep and cattle to defecate close to camping areas when set-stocked can cause large transfers of N within pasture paddocks. Transfer of N from pastures to laneways and to milking sheds (about 55 kg N/ha.year), and export of N in milk (80 kg N/ha.year), are major loss processes in intensively managed dairy pastures. Export of N in meat and wool are insignificant in respect to N2 fixation in improved pastures. Gaseous losses, specifically ammonia (NH3) volatilisation, can account for between 30 to 50% of urine voided to dead pasture or dry soil in summer and autumn. Lower proportions of urine N (10–25% of N applied) are lost after application to green pasture, with gaseous losses further reduced where rainfall occurs soon after urination. Although these losses of N are significant in the context of urine patches, micrometeorological techniques that measure NH3 volatilisation over an area of several hectares of grazed green pasture indicate that NH3 losses chiefly fall in the range 1–7% of urine N excreted. Annual rates of leaching of the order 15–35 kg NO3– N/ha have often been obtained under grazed legume pastures for a range of soil and climatic conditions. Uptake of NO3– by non-leguminous species in mixed pastures appears to be the main reason for the smaller quantities of leached NO3– than might be anticipated from the high rates of N addition in urine patches. The maintenance of low NO3– concentrations in field soils, together with low temperatures during periods of excess soil water, also appear to restrict denitrification in soil under mixed pasture swards, even though measurements undertaken in controlled soil environments suggest that denitrification could potentially account for up to 25–30% of urine N. The magnitude and timing of N release from legume residues remaining after grazing, and subsequent immobilisation of mineralised N, is affected by the efficiency of C use by the decomposer population, the demand for N, the chemical nature of the plant residues, and a range of soil factors. Green residues decompose rapidly with up to 40% of residue mineralised within 12 months. A slower rate of decomposition occurs in mature residues that possess a wider C:N ratio, and greater lignin:N ratio and/or polyphenol:N ratios. Where legume phases are followed by a crop phase, 10–20% of previously green legume residue N is typically used by the first succeeding crop, while less than 10% of N in mature pasture residue is normally in the first following crop. Loss of mineralised residue N from soil, by either NO3– leaching or denitrification, are small in Mediterranean-type climates, but can be large in wet temperate or tropical regions. Nevertheless, the soil organic matter pool is the main sink for N in legume residues. Mineralisation of soil organic matter after legume phases can result in the accumulation of 70–150 kg N/ha, chiefly as NO3–, in many soils during either winter or summer fallows. Between 40 and 100 kg NO3– N can be leached from the rooting zone of the first succeeding crop in soils that possess large hydraulic conductivities, highlighting that the greatest risk of N loss from legume-based rotations exists at the onset of subsequent cropping phases when the crop demand for mineral N is low. Few studies have evaluated the loss of legume- or soil-derived NO3– by denitrification in crops that follow legumes, making it difficult to assess the importance of this N loss process. Australian cereal crops can use as little as 21–36% of available soil-derived mineral N after legume phases on sandy soils with low water holding capacity, and up to 45–50% in the case of finer-textured red or red brown earths. Better synchronisation of N supply from legume phases with subsequent demand for mineral N would further enhance the efficiency of recovery of legume N. The review outlines ways in which this might be achieved, and it also discusses options that could be used to reduce N loss in grazed pastures.


Sign in / Sign up

Export Citation Format

Share Document