Carbon and Nitrogen Pools in Deep Soil Horizons at Different Landscape Positions

2018 ◽  
Vol 82 (6) ◽  
pp. 1512-1525 ◽  
Author(s):  
Gurbir Singh ◽  
Jon E. Schoonover ◽  
Karl W.J. Williard ◽  
Gurpreet Kaur ◽  
Jackie Crim
Forests ◽  
2016 ◽  
Vol 7 (12) ◽  
pp. 282 ◽  
Author(s):  
Filip Oulehle ◽  
Michal Růžek ◽  
Karolina Tahovská ◽  
Jiří Bárta ◽  
Oldřich Myška

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 345-347
Author(s):  
Aliya Nagiyeva ◽  
Nurlan Sergaliyev ◽  
Anuarbek T Bissembayev

Abstract Kazakhstan Western ecosystems are intensively used in agricultural production. Assessing greenhouse gas emissions from soils, especially CO2, is important. In the upper stages, microbiology, characteristics and condition of the soil change. Biological intensity indicators are soil respiration processes, numerous microbiocenoses species composition. Soil CO2 emissions were measured 5 times monthly during three years. The CO2 flow rate from soil surface is measured by a closed dynamic chamber method with Li-8100A field respirometer. Metagenomic soil testing used bacteria DNA, archaea, real-time PCR, 16SrRNA sequencing. The soil CO2 monthly dynamics fluxes varied among the lands, within the season. In 2020, the CO2 emissions soil peak noted in the pasture. There is a slight decline in summer with a decrease towards the cold season. Comparison between the CO2 flux pasture soils is less in virgin soil. The minimum CO2 flux was recorded in November - February; in the spring, the flux increases. The above CO2 emissions were recorded in summer. In soils, there is wide variety of microorganisms with opposite and incompatible properties for one habitat. The microbial communities structure identified at the family level. The taxonomic samples structure ominated by phylae - Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria, Gemmatimonadetes, Firmicutes, Actinobacteria. The spread explained by increased actinomycetes resistance characteristic to low moisture content with long dry period. For comparative evaluation microbial communities results comparing by cenoses of upper horizons with dark chestnut soil indicators. This violation caused microorganisms resistance to disturbing factors. On anthropogenically disturbed saline soils, the bacteria found were specific and resistant to critical conditions. CO2 emission in soil varied cenosis type. The CO2 intensity factors were precipitation deficit, high temperature. The profile microorganisms distribution corresponded to the soil horizons humus content. During summer soil drying, the deep soil horizons abundance occurred where moisture is retained.


2005 ◽  
Vol 216 (1-3) ◽  
pp. 216-226 ◽  
Author(s):  
Yu Sheng Yang ◽  
Jianfen Guo ◽  
Guangshui Chen ◽  
Jinsheng Xie ◽  
Ren Gao ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 544
Author(s):  
Risely Ferraz de Almeida ◽  
Joseph Elias Rodrigues Mikhael ◽  
Fernando Oliveira Franco ◽  
Luna Monique Fonseca Santana ◽  
Beno Wendling

Soil organic carbon and nitrogen can be divided into labile and recalcitrant pools according to the time it takes to be cycled. The way in which carbon and nitrogen pools are cycled and distributed between labile and recalcitrant pools can directly relate to soil quality. This paper tested the hypothesis that labile and recalcitrant pools of carbon and nitrogen vary between agricultural soils with different species and fertilization management systems (nitrogen, phosphorus, and potassium need) under tropical conditions. This study aimed to examine the impact of land-uses on stocks and losses of carbon and nitrogen under tropical conditions. We explored labile (soil microbial biomass and labile carbon) and recalcitrant carbon pools (humin, humic acid, and fulvic acid) in forested and agricultural soils, defined as latosol (forest, fertilized pasture, and unfertilized pasture) and cambisol (forest, coast pasture, sugarcane, and silage corn). Forested soil was used as an appropriate use to soil conservation in tropical that presents levels adequate of carbon and nitrogen stocks and biological condition in soil. Results showed that pools of labile and recalcitrant carbon are different on soil layers and the use of soil. Forest use in cambisol and latosol promoted higher labile and recalcitrant pools of carbon and nitrogen due to the greater environmental stability without human intervention. On the other hand, human intervention occurred in fertilized pasture and coast pasture; however, both uses presented similar recalcitrant carbon and nitrogen pools when compared to forested soil on the soil surface due to fertilizer uses and the high volume of the grass root system. Overall, our findings reveal that under tropical conditions, agriculture and forested soil can present similar recalcitrant pools of carbon and nitrogen if agricultural soils are associated with the appropriate fertilizer management. Pasture with adequate fertilization management systems can be used as an alternative to recover degraded areas with low levels of recalcitrant carbon and nitrogen pools.


2004 ◽  
Vol 68 (5) ◽  
pp. 1695-1704 ◽  
Author(s):  
Kevin F. Bronson ◽  
Ted M. Zobeck ◽  
Teresita T. Chua ◽  
Veronica Acosta-Martinez ◽  
R. Scott van Pelt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document