scholarly journals Measuring the Labile and Recalcitrant Pools of Carbon and Nitrogen in Forested and Agricultural Soils: A Study under Tropical Conditions

Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 544
Author(s):  
Risely Ferraz de Almeida ◽  
Joseph Elias Rodrigues Mikhael ◽  
Fernando Oliveira Franco ◽  
Luna Monique Fonseca Santana ◽  
Beno Wendling

Soil organic carbon and nitrogen can be divided into labile and recalcitrant pools according to the time it takes to be cycled. The way in which carbon and nitrogen pools are cycled and distributed between labile and recalcitrant pools can directly relate to soil quality. This paper tested the hypothesis that labile and recalcitrant pools of carbon and nitrogen vary between agricultural soils with different species and fertilization management systems (nitrogen, phosphorus, and potassium need) under tropical conditions. This study aimed to examine the impact of land-uses on stocks and losses of carbon and nitrogen under tropical conditions. We explored labile (soil microbial biomass and labile carbon) and recalcitrant carbon pools (humin, humic acid, and fulvic acid) in forested and agricultural soils, defined as latosol (forest, fertilized pasture, and unfertilized pasture) and cambisol (forest, coast pasture, sugarcane, and silage corn). Forested soil was used as an appropriate use to soil conservation in tropical that presents levels adequate of carbon and nitrogen stocks and biological condition in soil. Results showed that pools of labile and recalcitrant carbon are different on soil layers and the use of soil. Forest use in cambisol and latosol promoted higher labile and recalcitrant pools of carbon and nitrogen due to the greater environmental stability without human intervention. On the other hand, human intervention occurred in fertilized pasture and coast pasture; however, both uses presented similar recalcitrant carbon and nitrogen pools when compared to forested soil on the soil surface due to fertilizer uses and the high volume of the grass root system. Overall, our findings reveal that under tropical conditions, agriculture and forested soil can present similar recalcitrant pools of carbon and nitrogen if agricultural soils are associated with the appropriate fertilizer management. Pasture with adequate fertilization management systems can be used as an alternative to recover degraded areas with low levels of recalcitrant carbon and nitrogen pools.

2020 ◽  
Vol 26 (4) ◽  
pp. 2060-2071 ◽  
Author(s):  
Judith Sitters ◽  
E. R. Jasper Wubs ◽  
Elisabeth S. Bakker ◽  
Thomas W. Crowther ◽  
Peter B. Adler ◽  
...  

2012 ◽  
Vol 92 (3) ◽  
pp. 471-479 ◽  
Author(s):  
T. Huffman ◽  
D. R. Coote ◽  
M. Green

Huffman, T., Coote, D. R. and Green, M. 2012. Twenty-five years of changes in soil cover on Canadian Chernozemic (Mollisol) soils, and the impact on the risk of soil degradation. Can. J. Soil Sci. 92: 471–479. Agricultural soils that are covered by vegetation or crop residue are less susceptible to degradation by wind and water erosion, organic matter depletion, structural degradation and declining fertility. In general, perennial crops, higher yields, reduced tillage and continuous cropping provide more soil cover than annual crops, lower yields, intensive tillage, residue harvesting and fallowing. This study presents a model for estimating the number of days in a year that the soil surface is protected and demonstrates its application on the Canadian prairies over the period from 1981 to 2006. Over the 25-yr study period, the average soil cover on Canadian prairie soils increased by 4.8% overall. The improvement came primarily as a result of widespread adoption of no-till and a decline in the use of summerfallow, but the gains were offset to a great deal by a shift from higher-cover crops such as wheat, oats and barley to more profitable but lower-cover crops such as canola, soybeans and potatoes. The implication of these trends is that, even though protection of prairie agricultural soils has improved over the past 25 yr, soil cover could decline dramatically over the next several decades if crop changes continue, the adoption of conservation tillage reaches a peak and residue harvesting for biofuels becomes more common.


2013 ◽  
Vol 50 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Shahla Hosseini Bai ◽  
Timothy J. Blumfield ◽  
Frédérique Reverchon

Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2470 ◽  
Author(s):  
Aleksandra Ukalska-Jaruga ◽  
Bożena Smreczak

Polycyclic aromatic hydrocarbons (PAHs) exhibit persistence in soils, and most of them are potentially mutagenic/carcinogenic and teratogenic for human beings but also influence the growth and development of soil organisms. The PAHs emitted into the atmosphere are ultimately deposited (by dry or wet deposition processes) onto the soil surface where they tend to accumulate. Soil organic matter (SOM) plays an important role in the fate and transformation processes of PAHs, affecting their mobility, availability, and persistence. Therefore, the aim of this research was to investigate the influence of SOM fractional diversification (fulvic acids—FA, humic acids—HA, and humins—HN) on PAH availability and persistence in soils. Twenty soil samples (n = 20) were collected from upper horizons (0–30 cm) of agricultural soils exposed to anthropogenic emissions from industrial and domestic sources. The assessment of PAH concentrations included the determination of medium-molecular-weight compounds from the US EPA list: fluoranthene—FLA, pyrene—PYR, benz(a)anthracene—BaA, and chrysene—CHR. The assessment was conducted using the GC-MS/MS technique. Three operationally defined fractions were investigated: total extractable PAHs (TE-PAHs) fraction, available/bioavailable PAHs (PB-PAHs) fraction, and nonavailable/residual PAHs (RE-PAHs) fraction, which was calculated as the difference between total and available PAHs. TE-PAHs were analyzed by dichloromethane extraction, while PB-PAHs were analyzed with a hydrophobic β-cyclodextrin solution. SOM was characterized by total organic carbon content (Turin method) and organic carbon of humic substances including FA, HA, HN (IHSS method). Concentrations of PAHs differed between soils from 193.5 to 3169.5 µg kg−1, 4.3 to 226.4 µg kg−1, and 148.6 to 3164.7 µg kg−1 for ∑4 TE-PAHs, ∑4 PB-PAHs, and ∑4 RE-PAHs, respectively. The ∑4 PB-PAHs fraction did not exceed 30% of ∑4 TE-PAHs. FLA was the most strongly bound in soil (highest content of RE-FLA), whereas PYR was the most available (highest content of PB-PYR). The soils were characterized by diversified total organic carbon (TOC) concentration (8.0–130.0 g kg−1) and individual SOM fractions (FA = 0.4–7.5 g kg−1, HA = 0.6–13.0 g kg−1, HN = 0.9–122.9 g kg−1). FA and HA as the labile fraction of SOM with short turnover time strongly positively influenced the potential ∑4 PAH availability (r = 0.56 and r = 0.52 for FA and HA, respectively). HN, which constitutes a stable fraction of organic matter with high hydrophobicity and poor degradability, was strongly correlated with ∑4 RE-PAHs (r = 0.75), affecting their persistence in soil.


2019 ◽  
pp. 732-740 ◽  
Author(s):  
Joseph Elias Rodrigues Mikhael ◽  
Risely Ferraz Almeida ◽  
Fernando de Oliveira Franco ◽  
Roberta Oliveira Camargo ◽  
Beno Wendling

2020 ◽  
Vol 18 (5) ◽  
pp. 293-302
Author(s):  
Anna Augustyniuk-Kram ◽  
Karol J. Kram

In Poland, afforestation is usually carried out on the weakest soils, excluded from agricultural use and wasteland, i.e. post-agricultural land. A characteristic feature of such habitat is poor-quality soil, relatively high content of nutrients for trees, particularly nitrogen, as well as a low level of humus. This is important for the quality of microbiological processes occurring in post-agricultural soils. Restitution of the forest in such a habitat requires the use of various revitalisation treatments for improving soil quality and increasing biological activity and soil fertility. This article presents the results of a long-term experiment on the effectiveness of various revitalisation treatments (zoo- and phytomelioration) on afforested post-agricultural lands after more than 30 years from their application in pine forests in north-western Poland. These treatments consisted of introducing additional organic matter into the soil in the form of bark and sawdust, sowing lupine and introducing soil fauna. The comparative area for afforestation on post-agricultural soils in the presented experiment was the area of forest soils, located in the same habitat, in a pine stand, at the same time. Biological activity of soil was measured with the activity of soil enzymes dehydrogenases and acid phosphatase, the biomass of microorganisms was measured and the content of total dissolved carbon and nitrogen was also determined. 


2018 ◽  
Vol 42 (2) ◽  
pp. 195-203 ◽  
Author(s):  
Rose Luiza Moraes Tavares ◽  
Kurt Spokas ◽  
Kate Hall ◽  
Edward Colosky ◽  
Zigomar Menezes de Souza ◽  
...  

ABSTRACT Mechanized sugarcane harvest is replacing the historic practice of field burning, due to environmental concerns of the particulate and emissions during burning. However, the impact of these practices on soil greenhouse gas (GHG) production potential is not fully known. Thus, the present work quantified the potential production, in 1 g of soil, of greenhouse gases (GHG) in three systems of sugarcane management. The systems were: area with a history of burning sugarcane before harvest (B) and another with two systems of management of “green sugarcane” in two periods of implantation - 5 (G-5) and 10 years (G-10). A laboratory incubation experiment was used to assess the production potentials of carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) in 1g of soil samples by the different sugarcane management systems. The results of this study demonstrate that the sugarcane management systems had an impact on the potential production of CO2 in the soil. In addition, when the results of gases were divided from convex and concave areas, differences in CO2 patterns between areas B and G-10 were observed, with greater emission in the G-10 area, probably due the residue on the soil surface.


Sign in / Sign up

Export Citation Format

Share Document