Effect of Different Straw Return Modes on Soil Bacterial Community, Enzyme Activities and Organic Carbon Fractions

2019 ◽  
Vol 83 (3) ◽  
pp. 638-648 ◽  
Author(s):  
Huili Zhao ◽  
Yuhan Jiang ◽  
Peng Ning ◽  
Jifei Liu ◽  
Wei Zheng ◽  
...  
2020 ◽  
Vol 96 (5) ◽  
Author(s):  
Ning Wang ◽  
Jia-Lin Luo ◽  
Albert L Juhasz ◽  
Hong-Bo Li ◽  
Jian-Guang Yu

ABSTRACT Straw return is widely applied to increase soil fertility and soil organic carbon storage. However, its effect on N2O emissions from paddy soil and the associated microbial mechanisms are still unclear. In this study, wheat straw was amended to two paddy soils (2% w/w) from Taizhou (TZ) and Yixing (YX), China, which were flooded and incubated for 30 d. Real-time PCR and Illumina sequencing were used to characterize changes in denitrifying functional gene abundance and denitrifying bacterial communities. Compared to unamended controls, straw addition significantly decreased accumulated N2O emissions in both TZ (5071 to 96 mg kg–1) and YX (1501 to 112 mg kg–1). This was mainly due to reduced N2O production with decreased abundance of major genera of nirK and nirS-bacterial communities and reduced nirK and nirS gene abundances. Further analyses showed that nirK-, nirS- and nosZ-bacterial community composition shifted mainly along the easily oxidizable carbon (EOC) arrows following straw amendment among four different soil organic carbon fractions, suggesting that increased EOC was the main driver of alerted denitrifying bacterial community composition. This study revealed straw return suppressed N2O emission via altering denitrifying bacterial community compositions and highlighted the importance of EOC in controlling denitrifying bacterial communities.


2021 ◽  
pp. 1-12
Author(s):  
Yi Wang ◽  
Jianxin Dong ◽  
Xuebo Zheng ◽  
Jiguang Zhang ◽  
Peilu Zhou ◽  
...  

Annual removal of tobacco residues and insufficient input of organic materials have exacerbated total organic carbon (TOC) depletion and soil degradation in a tobacco field in the Huanghuai area. Straw residue and biochar application may be effective ways to increase TOC accumulation and improve soil fertility. In this field experiment, wheat straw (WS) and wheat-straw-derived biochar (BC) with mineral fertilizer were compared with mineral fertilizer alone (CK), and we assessed their effects on soil organic carbon fractions, enzyme activities, and nutrients in Shandong Province, China, during 2016 and 2017. At 0–20 cm depth, the WS treatment had a greater overall effect on the measured soil properties. Compared with the control, the WS treatment significantly increased the concentrations of microbial biomass carbon (MBC), hot-water-extractable carbon (HWC), and permanganate-oxidizable carbon concentrations (POXC; by 252.41%, 107.02%, and 65.53%, respectively); the activities of sucrase, urease, and phosphatase (by 112.52%, 7.81%, and 34.33%, respectively); and the contents of alkaline hydrolysable nitrogen, available phosphorus, and available potassium (by 92.22%, 100.78%, and 10.57%, respectively). Compared with the control, the BC treatment significantly increased TOC content, MBC content, light fraction organic carbon (LFOC), and potassium (TK) concentration (by 74.93%, 86.24%, 153.73%, and 21.92%, respectively). Most soil enzyme activity and nutrient parameters were significantly correlated with MBC. Thus, straw application improved soil fertility by increasing the concentrations of high labile organic carbon fractions (HWC, MBC, and POXC), stimulating soil enzyme activities, and releasing more soil available nutrients, and BC addition contributed to the accumulation of TOC, MBC, LFOC, and TK.


2018 ◽  
Vol 38 (15) ◽  
Author(s):  
刘俊第 LIU Jundi ◽  
林威 LIN Wei ◽  
王玉哲 WANG Yuzhe ◽  
姜婧 JIANG Jing ◽  
方熊 FANG Xiong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document