Sensitivity of Latent Heat Fluxes to Initial Values and Parameters of a Land-Surface Model

2010 ◽  
Vol 9 (4) ◽  
pp. 984-1001 ◽  
Author(s):  
Jörg Schwinger ◽  
Stefan J. Kollet ◽  
Charlotte M. Hoppe ◽  
Hendrik Elbern
2012 ◽  
Vol 16 (7) ◽  
pp. 2095-2107 ◽  
Author(s):  
B. Samain ◽  
G. W. H. Simons ◽  
M. P. Voogt ◽  
W. Defloor ◽  
N.-J. Bink ◽  
...  

Abstract. The catchment averaged actual evapotranspiration rate is a hydrologic model variable that is difficult to quantify. Evapotranspiration rates – up till present – cannot be continuously observed at the catchment scale. The objective of this paper is to estimate the evapotranspiration rates (or its energy equivalent, the latent heat fluxes LE) for a heterogeneous catchment of 102.3 km2 in Belgium using three fundamentally different algorithms. One possible manner to observe this variable could be the continuous measurement of sensible heat fluxes (H) across large distances (in the order of kilometers) using a large aperture scintillometer (LAS), and converting these observations into evapotranspiration rates. Latent heat fluxes are obtained through the energy balance equation using a series of sensible heat fluxes measured with a LAS over a distance of 9.5 km in the catchment, and point measurements of net radiation (Rn) and ground heat flux (G) upscaled to catchment average through the use of TOPLATS, a physically based land surface model. The resulting LE-values are then compared to results from the remote sensing based surface energy balance algorithm ETLook and the land surface model. Firstly, the performance of ETLook for the energy balance terms has been assessed at the point scale and at the catchment scale. Secondly, consistency between daily evapotranspiration rates from ETLook, TOPLATS and LAS is shown.


2015 ◽  
Vol 8 (6) ◽  
pp. 4653-4696 ◽  
Author(s):  
X. Wu ◽  
N. Vuichard ◽  
P. Ciais ◽  
N. Viovy ◽  
N. de Noblet-Ducoudré ◽  
...  

Abstract. The responses of crop functioning to changing climate and atmospheric CO2 concentration ([CO2]) could have large effects on food production, and impact carbon, water and energy fluxes, causing feedbacks to climate. To simulate the responses of temperate crops to changing climate and [CO2], accounting for the specific phenology of crops mediated by management practice, we present here the development of a process-oriented terrestrial biogeochemical model named ORCHIDEE-CROP (v0), which integrates a generic crop phenology and harvest module and a very simple parameterization of nitrogen fertilization, into the land surface model (LSM) ORCHIDEEv196, in order to simulate biophysical and biochemical interactions in croplands, as well as plant productivity and harvested yield. The model is applicable for a range of temperate crops, but it is tested here for maize and winter wheat, with the phenological parameterizations of two European varieties originating from the STICS agronomical model. We evaluate the ORCHIDEE-CROP (v0) model against eddy covariance and biometric measurements at 7 winter wheat and maize sites in Europe. The specific ecosystem variables used in the evaluation are CO2 fluxes (NEE), latent heat and sensible heat fluxes. Additional measurements of leaf area index (LAI), aboveground biomass and yield are used as well. Evaluation results reveal that ORCHIDEE-CROP (v0) reproduces the observed timing of crop development stages and the amplitude of pertaining LAI changes in contrast to ORCHIDEEv196 in which by default crops have the same phenology than grass. A near-halving of the root mean square error of LAI from 2.38 ± 0.77 to 1.08 ± 0.34 m2 m−2 is obtained between ORCHIDEEv196 and ORCHIDEE-CROP (v0) across the 7 study sites. Improved crop phenology and carbon allocation lead to a general good match between modelled and observed aboveground biomass (with a normalized root mean squared error (NRMSE) of 11.0–54.2 %), crop yield, as well as of the daily carbon and energy fluxes with NRMSE of ~9.0–20.1 and ~9.4–22.3 % for NEE, and sensible and latent heat fluxes, respectively. The model data mistfit for energy fluxes are within uncertainties of the measurements, which themselves show an incomplete energy balance closure within the range 80.6–86.3 %. The remaining discrepancies between modelled and observed LAI and other variables at specific sites are partly attributable to unrealistic representation of management events. In addition, ORCHIDEE-CROP (v0) is shown to have the ability to capture the spatial gradients of carbon and energy-related variables, such as gross primary productivity, NEE, sensible heat fluxes and latent heat fluxes, across the sites in Europe, an important requirement for future spatially explicit simulations. Further improvement of the model with an explicit parameterization of nutrition dynamics and of management, is expected to improve its predictive ability to simulate croplands in an Earth System Model.


2011 ◽  
Vol 8 (6) ◽  
pp. 10863-10894 ◽  
Author(s):  
B. Samain ◽  
G. W. H. Simons ◽  
M. P. Voogt ◽  
W. Defloor ◽  
N.-J. Bink ◽  
...  

Abstract. The catchment averaged actual evapotranspiration rate is a hydrologic model variable that is difficult to quantify. Evapotranspiration rates can – up till present – not be continuously observed at the catchment scale. The objective of this paper is to estimate the evapotranspiration rates (or its energy equivalent, the latent heat fluxes LE) for a heterogeneous catchment of 102.3 km2 in Belgium using three fundamentally different algorithms. One possible manner to observe this variable could be the continuous measurement of sensible heat fluxes (H) across large distances (in the order of kilometers) using a Large Aperture Scintillometer (LAS), and inverting these observations into evapotranspiration rates. Latent heat fluxes are obtained through the energy balance equation using a series of sensible heat fluxes (H) measured with a LAS over a distance of 9.5 km in the catchment, and point measurements of net radiation (Rn) and ground heat flux (G) upscaled to catchment average through the use of TOPLATS, a physically based land surface model. The resulting LE-values are then validated by comparing them to results from the remote sensing based surface energy balance algorithm ETLook and the land surface model. Firstly, it is demonstrated that ETLook is able to estimate the energy balance terms for daily time steps at the point scale and at the catchment scale. Secondly, consistency between daily evapotranspiration rates from ETLook, TOPLATS and LAS is shown. As such, ETLook provides the opportunity to estimate continuous series of the energy balance terms of a large area for daily time steps and can thus e.g. be used as a validation tool for LAS-measurements, whereas LAS is able to estimate the latent heat fluxes (evapotranspiration rates) for a large and heterogeneous catchment at an hourly time step which can be used for the forcing or validation of hydrologic models.


2016 ◽  
Vol 9 (2) ◽  
pp. 857-873 ◽  
Author(s):  
X. Wu ◽  
N. Vuichard ◽  
P. Ciais ◽  
N. Viovy ◽  
N. de Noblet-Ducoudré ◽  
...  

Abstract. The response of crops to changing climate and atmospheric CO2 concentration ([CO2]) could have large effects on food production, and impact carbon, water, and energy fluxes, causing feedbacks to the climate. To simulate the response of temperate crops to changing climate and [CO2], which accounts for the specific phenology of crops mediated by management practice, we describe here the development of a process-oriented terrestrial biogeochemical model named ORCHIDEE-CROP (v0), which integrates a generic crop phenology and harvest module, and a very simple parameterization of nitrogen fertilization, into the land surface model (LSM) ORCHIDEEv196, in order to simulate biophysical and biochemical interactions in croplands, as well as plant productivity and harvested yield. The model is applicable for a range of temperate crops, but is tested here using maize and winter wheat, with the phenological parameterizations of two European varieties originating from the STICS agronomical model. We evaluate the ORCHIDEE-CROP (v0) model against eddy covariance and biometric measurements at seven winter wheat and maize sites in Europe. The specific ecosystem variables used in the evaluation are CO2 fluxes (net ecosystem exchange, NEE), latent heat, and sensible heat fluxes. Additional measurements of leaf area index (LAI) and aboveground biomass and yield are used as well. Evaluation results revealed that ORCHIDEE-CROP (v0) reproduced the observed timing of crop development stages and the amplitude of the LAI changes. This is in contrast to ORCHIDEEv196 where, by default, crops have the same phenology as grass. A halving of the root mean square error for LAI from 2.38 ± 0.77 to 1.08 ± 0.34 m2 m−2 was obtained when ORCHIDEEv196 and ORCHIDEE-CROP (v0) were compared across the seven study sites. Improved crop phenology and carbon allocation led to a good match between modeled and observed aboveground biomass (with a normalized root mean squared error (NRMSE) of 11.0–54.2 %), crop yield, daily carbon and energy fluxes (with a NRMSE of  ∼  9.0–20.1 and  ∼  9.4–22.3 % for NEE), and sensible and latent heat fluxes. The simulated yields for winter wheat and maize from ORCHIDEE-CROP (v0) showed a good match with the simulated results from STICS for three sites with available crop yield observations, where the average NRMSE was  ∼  8.8 %. The model data misfit for energy fluxes were within the uncertainties of the measurements, which themselves showed an incomplete energy balance closure within the range 80.6–86.3 %. The remaining discrepancies between the modeled and observed LAI and other variables at specific sites were partly attributable to unrealistic representations of management events by the model. ORCHIDEE-CROP (v0) has the ability to capture the spatial gradients of carbon and energy-related variables, such as gross primary productivity, NEE, and sensible and latent heat fluxes across the sites in Europe, which is an important requirement for future spatially explicit simulations. Further improvement of the model, with an explicit parameterization of nutritional dynamics and management, is expected to improve its predictive ability to simulate croplands in an Earth system model.


2015 ◽  
Vol 120 (6) ◽  
pp. 2325-2341 ◽  
Author(s):  
Alan E. Lipton ◽  
Pan Liang ◽  
Carlos Jiménez ◽  
Jean-Luc Moncet ◽  
Filipe Aires ◽  
...  

2016 ◽  
Vol 16 (13) ◽  
pp. 8375-8387 ◽  
Author(s):  
Liang Chen ◽  
Yanping Li ◽  
Fei Chen ◽  
Alan Barr ◽  
Michael Barlage ◽  
...  

Abstract. A thick top layer of organic matter is a dominant feature in boreal forests and can impact land–atmosphere interactions. In this study, the multi-parameterization version of the Noah land surface model (Noah-MP) was used to investigate the impact of incorporating a forest-floor organic soil layer on the simulated surface energy and water cycle components at the BERMS Old Aspen site (OAS) field station in central Saskatchewan, Canada. Compared to a simulation without an organic soil parameterization (CTL), the Noah-MP simulation with an organic soil (OGN) improved Noah-MP-simulated soil temperature profiles and soil moisture at 40–100 cm, especially the phase and amplitude (Seasonal cycle) of soil temperature below 10 cm. OGN also enhanced the simulation of sensible and latent heat fluxes in spring, especially in wet years, which is mostly related to the timing of spring soil thaw and warming. Simulated top-layer soil moisture is better in OGN than that in CTL. The effects of including an organic soil layer on soil temperature are not uniform throughout the soil depth and are more prominent in summer. For drought years, the OGN simulation substantially modified the partitioning of water between direct soil evaporation and vegetation transpiration. For wet years, the OGN-simulated latent heat fluxes are similar to CTL except for the spring season when OGN produced less evaporation, which was closer to observations. Including organic soil produced more subsurface runoff and resulted in much higher runoff throughout the freezing periods in wet years.


2007 ◽  
Vol 8 (1) ◽  
pp. 68-87 ◽  
Author(s):  
Margaret A. LeMone ◽  
Fei Chen ◽  
Joseph G. Alfieri ◽  
Mukul Tewari ◽  
Bart Geerts ◽  
...  

Abstract Analyses of daytime fair-weather aircraft and surface-flux tower data from the May–June 2002 International H2O Project (IHOP_2002) and the April–May 1997 Cooperative Atmosphere Surface Exchange Study (CASES-97) are used to document the role of vegetation, soil moisture, and terrain in determining the horizontal variability of latent heat LE and sensible heat H along a 46-km flight track in southeast Kansas. Combining the two field experiments clearly reveals the strong influence of vegetation cover, with H maxima over sparse/dormant vegetation, and H minima over green vegetation; and, to a lesser extent, LE maxima over green vegetation, and LE minima over sparse/dormant vegetation. If the small number of cases is producing the correct trend, other effects of vegetation and the impact of soil moisture emerge through examining the slope ΔxyLE/ΔxyH for the best-fit straight line for plots of time-averaged LE as a function of time-averaged H over the area. Based on the surface energy balance, H + LE = Rnet − Gsfc, where Rnet is the net radiation and Gsfc is the flux into the soil; Rnet − Gsfc ∼ constant over the area implies an approximately −1 slope. Right after rainfall, H and LE vary too little horizontally to define a slope. After sufficient drying to produce enough horizontal variation to define a slope, a steep (∼−2) slope emerges. The slope becomes shallower and better defined with time as H and LE horizontal variability increases. Similarly, the slope becomes more negative with moister soils. In addition, the slope can change with time of day due to phase differences in H and LE. These trends are based on land surface model (LSM) runs and observations collected under nearly clear skies; the vegetation is unstressed for the days examined. LSM runs suggest terrain may also play a role, but observational support is weak.


2016 ◽  
Author(s):  
Vanessa Haverd ◽  
Matthias Cuntz ◽  
Lars P. Nieradzik ◽  
Ian N. Harman

Abstract. CABLE is a global land surface model, which has been used extensively in offline and coupled simulations. While CABLE performs well in comparison with other land surface models, results are impacted by decoupling of transpiration and photosynthesis fluxes under drying soil conditions, often leading to implausibly high water use efficiencies. Here we present a solution to this problem, ensuring that modeled transpiration is always consistent with modeled photosynthesis, while introducing a parsimonious single-parameter drought response function which is coupled to root water uptake. We further improve CABLE’s simulation of coupled soil-canopy processes by introducing an alternative hydrology model with a physically accurate representation of coupled energy and water fluxes at the soil/air interface, including a more realistic formulation of transfer under atmospherically stable conditions within the canopy and in the presence of leaf litter. The effects of these model developments are assessed using data from 18 stations from the global Eddy covariance flux network FLUXNET, selected to span a large climatic range. Marked improvements are demonstrated, with root-mean-squared errors for monthly latent heat fluxes and water use efficiencies being reduced by 40 %. Results highlight the important roles of deep soil moisture in mediating drought response and litter in dampening soil evaporation.


2014 ◽  
Vol 18 (5) ◽  
pp. 1761-1783 ◽  
Author(s):  
O. Branch ◽  
K. Warrach-Sagi ◽  
V. Wulfmeyer ◽  
S. Cohen

Abstract. A 10 × 10 km irrigated biomass plantation was simulated in an arid region of Israel to simulate diurnal energy balances during the summer of 2012 (JJA). The goal is to examine daytime horizontal flux gradients between plantation and desert. Simulations were carried out within the coupled WRF-NOAH atmosphere/land surface model. MODIS land surface data was adjusted by prescribing tailored land surface and soil/plant parameters, and by adding a controllable sub-surface irrigation scheme to NOAH. Two model cases studies were compared – Impact and Control. Impact simulates the irrigated plantation. Control simulates the existing land surface, where the predominant land surface is bare desert soil. Central to the study is parameter validation against land surface observations from a desert site and from a 400 ha Simmondsia chinensis (jojoba) plantation. Control was validated with desert observations, and Impact with Jojoba observations. Model evapotranspiration was validated with two Penman–Monteith estimates based on the observations. Control simulates daytime desert conditions with a maximum deviation for surface 2 m air temperatures (T2) of 0.2 °C, vapour pressure deficit (VPD) of 0.25 hPa, wind speed (U) of 0.5 m s−1, surface radiation (Rn) of 25 W m−2, soil heat flux (G) of 30 W m−2 and 5 cm soil temperatures (ST5) of 1.5 °C. Impact simulates irrigated vegetation conditions with a maximum deviation for T2 of 1–1.5 °C, VPD of 0.5 hPa, U of 0.5 m s−1, Rn of 50 W m−5, G of 40 W m−2 and ST5 of 2 °C. Latent heat curves in Impact correspond closely with Penman–Monteith estimates, and magnitudes of 160 W m−2 over the plantation are usual. Sensible heat fluxes, are around 450 W m−2 and are at least 100–110 W m−2 higher than the surrounding desert. This surplus is driven by reduced albedo and high surface resistance, and demonstrates that high evaporation rates may not occur over Jojoba if irrigation is optimized. Furthermore, increased daytime T2 over plantations highlight the need for hourly as well as daily mean statistics. Daily mean statistics alone may imply an overall cooling effect due to surplus nocturnal cooling, when in fact a daytime warming effect is observed.


2021 ◽  
Author(s):  
Mengyuan Mu ◽  
Martin De Kauwe ◽  
Anna Ukkola ◽  
Andy Pitman ◽  
Teresa Gimeno ◽  
...  

<p>Land surface models underpin coupled climate model projections of droughts and heatwaves. However, the lack of simultaneous observations of individual components of evapotranspiration, concurrent with root-zone soil moisture, has limited previous model evaluations. Here, we use a comprehensive set of observations from a water-limited site in southeastern Australia including both evapotranspiration and soil moisture to a depth of 4.5 m to evaluate the Community Atmosphere-Biosphere Land Exchange (CABLE) land surface model. We demonstrate that alternative process representations within CABLE had the capacity to improve simulated evapotranspiration, but not necessarily soil moisture dynamics - highlighting problems of model evaluations against water fluxes alone. Our best simulation was achieved by resolving a soil evaporation bias; a more realistic initialisation of the groundwater aquifer state; higher vertical soil resolution informed by observed soil properties; and further calibrating soil hydraulic conductivity. Despite these improvements, the role of the empirical soil moisture stress function in influencing the simulated water fluxes remained important: using a site calibrated function reduced the soil water stress on plants by 36 % during drought and 23 % at other times. These changes in CABLE not only improve the seasonal cycle of evapotranspiration, but also affect the latent and sensible heat fluxes during droughts and heatwaves. The range of parameterisations tested led to differences of ~150 W m<sup>-2</sup> in the simulated latent heat flux during a heatwave, implying a strong impact of parameterisations on the capacity for evaporative cooling and feedbacks to the boundary layer (when coupled). Overall, our results highlight the opportunity to advance the capability of land surface models to capture water cycle processes, particularly during meteorological extremes, when sufficient observations of both evapotranspiration fluxes and soil moisture profiles are available.</p>


Sign in / Sign up

Export Citation Format

Share Document