Scaled Solutions to Coupled Soil-Water Flow and Solute Transport during the Redistribution Process

2012 ◽  
Vol 11 (4) ◽  
pp. vzj2012.0023 ◽  
Author(s):  
Morteza Sadeghi ◽  
Scott B. Jones
2021 ◽  
Author(s):  
Vedran Krevh ◽  
Jasmina Defterdarović ◽  
Lana Filipović ◽  
Zoran Kovač ◽  
Steffen Beck-Broichsitter ◽  
...  

<p>SUPREHILL is a new (2020) and first Croatian critical zone observatory (CZO), focused on local scale agricultural e.g., vineyard hillslope processes. The experimental setup includes an extensive sensor-based network accompanied by weighing lysimeters and instruments for surface and subsurface hydrology measurement. The field measurements are supported by novel laboratory and numerical quantification methods for the determination of water flow and solute transport. This combined approach will allow the research team to accurately determine soil water balance components (soil water flow, preferential flow/transport pathways, surface runoff, evapotranspiration), the temporal origin of water in hillslope hydrology (isotopes), transport of agrochemicals, and to calibrate and validate numerical modeling procedures for describing and predicting soil water flow and solute transport. First results from sensors indicate increased soil moisture on the hilltop, which is supported by precipitation data from rain gauges and weighing lysimeters. The presence of a compacted soil horizon and compacted inter-row parts (due to trafficking) of the vineyard seems to be highly relevant in regulating water dynamics. Wick lysimeters confirm the sensor soil moisture data, while showing a significant difference in its repetitions which suggests a possibility of a preferential flow imposed by local scale soil heterogeneity. Measured values of surface and subsurface runoff suggest a crucial role of these processes in the hillslope hydrology, while slope and structure dynamics additionally influence soil hydraulic properties. We are confident that the CZO will give us new insights in the landscape heterogeneity and substantially increase our understanding regarding preferential flow and nonlinear solute transport, with results directly applicable in agricultural (sloped agricultural soil management) and environmental (soil and water) systems. Challenges remain in characterizing local scale soil heterogeneity, dynamic properties quantification and scaling issues for which we will rely on combining CZO focused measurements and numerical modeling after substantial data is collected.</p>


2021 ◽  
Vol 21 (4) ◽  
pp. 1598-1608
Author(s):  
Wei Zhu ◽  
Jingsong Yang ◽  
Rongjiang Yao ◽  
Xiangping Wang ◽  
Wenping Xie ◽  
...  

2020 ◽  
Vol 5 (52) ◽  
pp. 2313
Author(s):  
Lukas Riedel ◽  
Santiago De Ríos ◽  
Dion Häfner ◽  
Ole Klein

2021 ◽  
Author(s):  
Lukas Riedel ◽  
Hannes Helmut Bauser ◽  
Robert Maiwald ◽  
Santiago Ospina De Los Ríos

<div> <div>Soil water flow is a key hydrological process supporting several ecosystem services. The non-linear soil hydraulic material properties have a profound influence on the flow dynamics and cannot be measured directly. They can be estimated with data assimilation based on measurements of the soil hydraulic state. As soils feature a multi-scale architecture, these measurements typically cannot resolve the soil heterogeneity on the relevant spatial and estimating it becomes difficult. In a previous study, we estimated a one-dimensional effective representation of a synthetic, two-dimensional, heterogeneous domain based on a vertical measurement profile using an ensemble Kalman filter. The estimated one-dimensional model represented the dynamics of the soil water movement sufficiently well, but it remained unclear if these results can be transferred to associated physical processes.</div> <br><div>Soil water flow also transports solutes between surface and groundwater. The accurate description of solute fluxes and concentrations is crucial for predicting groundwater quality and contamination. In this study, we use the aforementioned estimated, one-dimensional representation of the domain to simulate and forecast passive solute transport within the soil water flow. We examine its predictive capabilities by comparing these results with results obtained from the two-dimensional, heterogeneous synthetic truth from which artificial measurements are extracted.</div> </div>


2019 ◽  
Author(s):  
Alexander Sternagel ◽  
Ralf Loritz ◽  
Wolfgang Wilcke ◽  
Erwin Zehe

Abstract. We propose an alternative model to overcome these weaknesses of the Darcy-Richards approach and to simulate preferential soil water flow and tracer transport in macroporous soils. Our LAST-Model (Lagrangian Soil Water and Solute Transport) relies on a Lagrangian perspective on the movement of water particles carrying a solute mass through the soil matrix and macropores. We advance the model of Zehe and Jackisch (2016) by two main extensions: a) a new routine for solute transport within the soil matrix and b) the implementation of an additional 1-D preferential flow domain which simulates flow and transport in a population of macropores. Infiltration into the matrix and the macropores depends on their moisture state and subsequently macropores are gradually filled. Macropores and matrix interact through diffusive mixing of water and solutes between the two domains which depends on their water content and matric potential at the considered depths. The LAST-Model is then evaluated with sensitivity analyses and tested against tracer field experiments at three different sites. The results show the internal and physical validity of the model and the robustness of our solute transport and the linear mixing approach. Further, the model is able to simulate preferential flow through macropores and to depict well the observed 1-D solute mass profile of a tracer experiment with a high computational efficiency and short simulation times.


Sign in / Sign up

Export Citation Format

Share Document