Predicting Solute Transport in Soil Water Flow with Estimated, Effective Material Properties

Author(s):  
Lukas Riedel ◽  
Hannes Helmut Bauser ◽  
Robert Maiwald ◽  
Santiago Ospina De Los Ríos

<div> <div>Soil water flow is a key hydrological process supporting several ecosystem services. The non-linear soil hydraulic material properties have a profound influence on the flow dynamics and cannot be measured directly. They can be estimated with data assimilation based on measurements of the soil hydraulic state. As soils feature a multi-scale architecture, these measurements typically cannot resolve the soil heterogeneity on the relevant spatial and estimating it becomes difficult. In a previous study, we estimated a one-dimensional effective representation of a synthetic, two-dimensional, heterogeneous domain based on a vertical measurement profile using an ensemble Kalman filter. The estimated one-dimensional model represented the dynamics of the soil water movement sufficiently well, but it remained unclear if these results can be transferred to associated physical processes.</div> <br><div>Soil water flow also transports solutes between surface and groundwater. The accurate description of solute fluxes and concentrations is crucial for predicting groundwater quality and contamination. In this study, we use the aforementioned estimated, one-dimensional representation of the domain to simulate and forecast passive solute transport within the soil water flow. We examine its predictive capabilities by comparing these results with results obtained from the two-dimensional, heterogeneous synthetic truth from which artificial measurements are extracted.</div> </div>

2021 ◽  
Author(s):  
Vedran Krevh ◽  
Jasmina Defterdarović ◽  
Lana Filipović ◽  
Zoran Kovač ◽  
Steffen Beck-Broichsitter ◽  
...  

<p>SUPREHILL is a new (2020) and first Croatian critical zone observatory (CZO), focused on local scale agricultural e.g., vineyard hillslope processes. The experimental setup includes an extensive sensor-based network accompanied by weighing lysimeters and instruments for surface and subsurface hydrology measurement. The field measurements are supported by novel laboratory and numerical quantification methods for the determination of water flow and solute transport. This combined approach will allow the research team to accurately determine soil water balance components (soil water flow, preferential flow/transport pathways, surface runoff, evapotranspiration), the temporal origin of water in hillslope hydrology (isotopes), transport of agrochemicals, and to calibrate and validate numerical modeling procedures for describing and predicting soil water flow and solute transport. First results from sensors indicate increased soil moisture on the hilltop, which is supported by precipitation data from rain gauges and weighing lysimeters. The presence of a compacted soil horizon and compacted inter-row parts (due to trafficking) of the vineyard seems to be highly relevant in regulating water dynamics. Wick lysimeters confirm the sensor soil moisture data, while showing a significant difference in its repetitions which suggests a possibility of a preferential flow imposed by local scale soil heterogeneity. Measured values of surface and subsurface runoff suggest a crucial role of these processes in the hillslope hydrology, while slope and structure dynamics additionally influence soil hydraulic properties. We are confident that the CZO will give us new insights in the landscape heterogeneity and substantially increase our understanding regarding preferential flow and nonlinear solute transport, with results directly applicable in agricultural (sloped agricultural soil management) and environmental (soil and water) systems. Challenges remain in characterizing local scale soil heterogeneity, dynamic properties quantification and scaling issues for which we will rely on combining CZO focused measurements and numerical modeling after substantial data is collected.</p>


2021 ◽  
Vol 21 (4) ◽  
pp. 1598-1608
Author(s):  
Wei Zhu ◽  
Jingsong Yang ◽  
Rongjiang Yao ◽  
Xiangping Wang ◽  
Wenping Xie ◽  
...  

2020 ◽  
Vol 5 (52) ◽  
pp. 2313
Author(s):  
Lukas Riedel ◽  
Santiago De Ríos ◽  
Dion Häfner ◽  
Ole Klein

Sign in / Sign up

Export Citation Format

Share Document